Trace Elemental Analysis (TEA) Information

Trace elemental analysis

Chemical elements constitute all of the ordinary matter in the universe. Of the 118 elements that have been identified, 94 are found naturally on Earth, having either stable or unstable isotopes.

Because all matter differs in its elemental composition, it also differs in its chemical properties. Knowing the compositions or concentrations of elements in a given material can reveal several qualities about that material; e.g., geographic origin, product quality, process operation. Given its name, trace elemental analysis (TEA) inherently deals with the determination of small amounts of chemical elements; these small amounts often span a wide concentration range (e.g., 0.1% in rock composition, parts per trillion in semiconductor-grade chemicals).

Because it covers the analysis of elements, TEA is an integral discipline in understanding the natural world. As such, TEA can be applied to a wide variety of fields including environmental monitoring, pharmaceutical testing, food safety, geochemistry, petrochemistry, metallurgy, toxicology, forensics, and many other disciplines.

In this section, you will:

  • Learn which TEA instruments and technologies are ideally suited to elemental sample analysis
  • Find out when and why atomic absorption spectrometry (AAS), inductively coupled plasma mass spectrometry (ICP-MS), and inductively coupled plasma optical emission spectroscopy (ICP-OES) are used to collect information about certain compounds
  • Understand how AAS, ICP-MS, ICP-OES data are acquired and which techniques are regularly applied during the collection and processing of these data
  • Find out which critical factors, including spectral interferences and toxic elements, must be considered during sample preparation for trace elemental analysis

TEA features

Technical note

Learn how GC can be coupled to ICP-MS for ultratrace tin speciation to determine TBT.

Application note

Understand how AA spectrometry is applied to the detection of trace levels of mercury in fish.


On-demand webcasts: Simplify Everyday Trace Elemental Analysis
On-demand webcasts: Simplify Everyday Trace Elemental Analysis

TEA information subtopics

Learn how AA spectrometry can be a cost-effective analysis technique for sequential elemental determination using either flame or furnace analysis.

Discover the superior detection capabilities of ICP-MS for simple and complex matrices, including those containing rare earth metals, along with its ability to characterize organic and inorganic samples at ppm to sub-ppt levels.

Understand the ways in which ICP-OES enables robust multi-element analysis for any matrix, along with a broad (% to sub-ppb) dynamic range.

Spectroscopy Elemental & Isotope Analysis Resource Library

Access our extensive collection of workflows, scientific applications, technical handbooks, posters, and webinars on spectroscopy, elemental, and isotope analysis.