You searched for: 

12346094

Product FAQ

How much MgCl2 should be added to the PCR amplification when using AmpliTaq™ DNA Polymerase or AmpliTaq Gold™ DNA Polymerase?

Answer

The standard starting point is a final concentration of 1.5 mM magnesium ion. Since each molecule of dNTP (total 0.8 mM per reaction at 200 μM each) binds a magnesium ion, 0.8 mM magnesium ions are unavailable for AmpliTaq™ DNA Polymerase to use; hence, 0.7 mM free magnesium ions will be available as a cofactor for Taq's polymerization activity. It is important to note that there are other substrates in PCR amplifications that can also bind free magnesium (such as primers and template) therefore, the magnesium ion concentration should be titrated in order to find the optimum concentration for each reaction.

Answer Id: E1088

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

I’m seeing high molecular weight EtBr stainable material left in wells. Why is this happening?

Answer

This artifact occurs when either too many cycles were performed or too much DNA is added to the reaction. Try heating to 65 degrees C and putting sample on ice before loading.

Answer Id: E7292

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

What are the main steps in PCR?

Answer

The main steps are: denaturation, annealing, and extension. The template is typically heated to a high temperature (around 94-95 degrees C) allowing for the double-stranded DNA to denature into single strands. Next, the temperature is lowered to 50-65 degrees C, allowing primers to anneal to their complementary base-pair regions. The temperature is then increased to 72 degrees C, allowing for the polymerase to bind and synthesize a new strand of DNA.

Answer Id: E7269

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

I received my primer order, but the yield is lower than the scale that I ordered. Why is this?

Answer

The scale that is ordered refers to the starting synthesis scale, or amount of starting material used to create your oligo. Based on purification and efficiency, you will receive less than the starting synthesis scale. However, we do have a minimum yield guarantee based on the starting synthesis scale which can be found here: https://www.thermofisher.com/us/en/home/products-and-services/product-types/primers-oligos-nucleotides/invitrogen-custom-dna-oligos/oligo-ordering-details/oligo-minimum-yield-guarantee.html.

Answer Id: E7293

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

What is "Hot-start" PCR?

Answer

Hot-start is a technique commonly used to improve the sensitivity and specificity of PCR amplifications. The major obstacle to obtaining highly sensitive and specific amplifications appears to be competing side reactions such as the amplification of non-target sequences (mis-priming) and primer oligomerization. In an otherwise optimized PCR amplification, most non-specific products can be attributed to pre-PCR mispriming. Mispriming can occur any time all components necessary for amplification are present at permissive temperatures (below optimal annealing temperature) such as during reaction set up. A hot start can be performed either manually or can be automated utilizing AmpliTaq Gold DNA Polymerase.

In the manual hot-start technique a key component necessary for amplification, such as the enzyme, is withheld from the reaction mix until the reaction reaches a temperature above the optimal annealing temperature of the primers. Once this temperature is reached, the missing component is added and the PCR amplification is allowed to proceed. Because a key component was withheld from the reaction at permissive temperatures, competing side reactions are minimized and specific amplification occurs.

AmpliTaq Gold™ DNA Polymerase facilitates the automation of the hot start technique and decreases the potential for contamination. AmpliTaq Gold DNA Polymerase is a modified form of AmpliTaq DNA Polymerase. Once activated, AmpliTaq Gold™ DNA Polymerase performs just as AmpliTaq DNA Polymerase does. Since it is provided in its inactive form, it can be added to a reaction without the fear of pre-PCR misprimed primers being extended. Once all of the components for amplification have been added to a tube, the reaction is heated to 95C for 5 - 10 minutes. This incubation activates the enzyme and allows the reaction to proceed normally.

Answer Id: E1098

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

What does hot start PCR mean?

Answer

Hot start is a way to prevent DNA amplification from occurring before you want it to. One way to do this is to set up the PCR reaction on ice, which prevents the DNA polymerase from being active. An easier method is a use a ‘hot-start’ enzyme, in which the DNA polymerase is provided in an inactive state until it undergoes a high-heat step.

Answer Id: E7270

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

I’m getting low yield of my oligo upon reconstitution. What happened?

Answer

The oligo may not have been fully solubilized. After addition of TE buffer, make sure the oligo was vortexed for a full 30 seconds and/or pipette up and down more than 10 times. Primers may be present along the sides of the tubs, so when resuspending the oligo, the sides of the tubes should be “rinsed” too.

Answer Id: E7294

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

I ordered a primer with restriction enzyme sites flanking the 3’ and 5’ ends of my oligo with desalted purification. When trying to subclone the PCR product, I get very few colonies. I have tested all conditions, and it seems to be the oligo causing the problem. Can you explain why this happened?

Answer

Better purification of the oligos is recommended to provide you with full-length oligo sequence. Adding restriction sites adds on 10 or more bases to the basic 20-25-mer, making primers longer than 30 bases with a relatively low percentage of full-length sequences after desalting. Additionally, failure sequences occur at the 5’ end of the sequence as oligos are generated from 3’ to 5’ end. Therefore, restriction sites introduced at the 5’ end of primers can be compromised, resulting in missing bases.

Answer Id: E7295

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

I’m getting low yield of my desired fragment. What am I doing wrong and how can I increase my yield?

Answer

Please see our suggestions below to increase yield:

-Do not use a wooden toothpick to pick colonies or scoop out DNA from a gel prior to PCR. It has been reported that this technique can inhibit PCR. [Lee (1995) BioTechniques 18:225].
-Not enough enzyme was used.
-Denaturation/extension temperature was too high and enzyme died prematurely.
-Too much DMSO (>10%).
-Incorrect annealing temperature: run a series of reactions using different annealing temperatures, starting 5 degrees below the calculated Tm.
-Too few cycles.
-Insufficient or too much Mg2+.
-Poorly designed primers: double check primer sequence against template sequence, primers should have similar melting temperatures, avoid complementary sequences at the 3’ end of primers.
-Carryover inhibitors (e.g., blood, serum).
-Denaturation time was too short. Genomic and viral DNA can require denaturation times of 10 minutes.
-Not a long enough extension time was used depending on the size of product being amplified.
-Use of super-irradiated (treated with >2500 mj/cm2) mineral oil will either inhibit or decrease yield of PCR product [Dohner (1995) Biotechniques 18:964].
-Template had long runs of GC's [Woodford et al. (1995) Nucleic Acids Res 23:539 show that by eliminating all potassium from the amplification reactions, GC-rich regions in templates are sufficiently destabilized to allow PCR]. Alternatively, a combination of 1.0 M betaine with 6-8% DMSO or 5% DMSO with 1.2-1.8 M betaine can be used to amplify GC-rich templates [Baskaran (1996) Genome Res 6:633].
-Other inhibitors of Taq DNA polymerase were present (e.g., indigo dyes, heme, melanin, etc.). Add BSA to the PCR (~160-600 μg/mL), increase the amount of Taq, and/or increase the volume of the PCR to dilute out the inhibitor. The concentration of BSA to add may be dependent on the amount and type of inhibitor present. Additionally, fatty acid-free, alcohol-precipitated BSA, or Fraction V BSA all should be effective.

Answer Id: E7289

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

What is the difference between Platinum™ technology and AccuPrime™ technology?

Answer

With Platinum™ technology, anti-DNA polymerase antibodies bind to the enzyme until the denaturing step at 94 degrees C, when the antibodies degrade. The polymerase is now active and primer extension can occur. AccuPrime™ Taq combines Platinum™ Taq (Taq + Platinum™ antibodies) with proprietary thermostable AccuPrime™ accessory proteins. The 10X reaction buffer contains the accessory proteins which enhance specific primer-template hybridization during each cycle of PCR.

Answer Id: E7266

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

How are these oligos quality controlled?

Answer

For 25, 50, and 200 nmol desalted and cartridge-purified DNA oligos, there is 100% A260 analysis. Random samples of 25% of the oligos produced are tested by either capillary electrophoresis or mass spectrometry. DNA oligos that are desalted and ordered at 25 and 50 nmol scales also have 100% real-time digital trityl monitoring during analysis. Desalted DNA oligos ordered at 1 and 10 μmols, DNA oligos at any scale that are purified by HPLC and PAGE, the majority of the DNA oligos with 3’ and/or 5’ modifications, and RNA oligos have 100% A260 analysis and capillary electrophoresis or mass spectrometry.

Answer Id: E7286

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

Why is it difficult to amplify a GC-rich template?

Answer

A GC-rich template often has a higher melting temperature and may not denature completely under the normal reaction conditions.

Answer Id: E7272

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

What are the melting temperatures for the M13 Forward (-20) and M13 Reverse primers in the TOPO™ Cloning and Zero Blunt™ Kits?

Answer

Assuming that the primer is at a 50 nM final concentration and 50 mM final salt concentration, the melting temperatures are: M13 Forward (-20) Primer = 52.7 and the M13 Reverse Primer = 45.3. For use in the control PCR reaction we recommend using an annealing temperature of 56C.

Answer Id: E4024

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

Can you suggest some guidelines that will help me design my PCR primers?

Answer

These guidelines may be useful as you design your PCR primers:

- In general, a length of 18-30 nucleotides for primers is good.
- Try to make the melting temperature (Tm) of the primers between 65 degrees C and 75 degrees C, and within 5 degrees C of each other.
- If the Tm of your primer is very low, try to find a sequence with more GC content, or extend the length of the primer a little.
- Aim for the GC content to be between 40 and 60%, with the 3’ of a primer ending in C or G to promote binding.
- Typically, 3 to 4 nucleotides are added 5’ of the restriction enzyme site in the primer to allow for efficient cutting.
- Try to avoid regions of secondary structure, and have a balanced distribution of GC-rich and AT-rich domains.
- Try to avoid runs of 4 or more of one base, or dinucleotide repeats (for example, ACCCC or ATATATAT).
- Avoid intra-primer homology (more than 3 bases that complement within the primer) or inter-primer homology (forward and reverse primers having complementary sequences). These circumstances can lead to self-dimers or primer-dimers instead of annealing to the desired DNA sequences.
- If you are using the primers for cloning, we recommend cartridge purification as a minimum level of purification.
- If you are using the primers for mutagenesis, try to have the mismatched bases towards the middle of the primer.
- If you are using the primers for a PCR reaction to be used in TOPO™ cloning, the primers should not have a phosphate modification.
Read more about primer design tips and tools at https://www.thermofisher.com/us/en/home/products-and-services/product-types/primers-oligos-nucleotides/invitrogen-custom-dna-oligos/primer-design-tools.html.

Answer Id: E7275

Was this answer helpful?

Yes
No
Thank you for your response

Product FAQ

Does AmpliTaq™ Gold DNA Polymerase contain exonuclease (proofreading) activity?

Answer

No, AmpliTaq™ Gold DNA polymerase does not contain proofreading activity, however fidelity in PCR amplifications utilizing this enzyme may be improved. High fidelity can be achieved by: 1. Decreasing the final concentration of each nucleotide to 40-50 uM. 2. Using the lowest MgCl2 concentration possible. 3. Using less enzyme. 4. Decreasing extension times. 5. Using the highest annealing temperature possible. 6. Using as few cycles as possible.

Answer Id: E1338

Was this answer helpful?

Yes
No
Thank you for your response