What pattern of oxygen uptake should I expect to observe during a fermentation run?

Product FAQ

Answer

It depends whether the clone is a Mut+ or a MutS.

For a Mut+ you should expect that initially (in the first 2-4 hours of induction) the oxygen uptake rate of the culture would be lower than the end of glycerol batch phase. After the culture becomes adapted to methanol, the oxygen uptake rate will significantly increase, if the culture is healthy (i.e. not poisoned by too much methanol). One should run methanol spike tests during fermentation of Mut+ clones.

For a MutS one can expect that the oxygen uptake rate will be lower than the end of glycerol batch phase through out most of the fermentation. One has to be very careful not to poison MutS clones.

Answer Id: E3752

Was this answer helpful?

Yes
No
Thank you for your response

What can be used as an acid to adjust the pH of fermentation media? Does it even need to be pH'ed?

Product FAQ

Answer

No acid is required for Pichia fermentation. A healthy culture always acidifies the media. If the pH of the culture is increasing it is a sign of carbon source depletion or ill health of the culture.

Answer Id: E3753

Was this answer helpful?

Yes
No
Thank you for your response

Why would I pick a yeast expression system for expression of my protein, as opposed to expression systems in other hosts?

Product FAQ

Answer

Yeast is a single-celled, eukaryotic organism that can grow quickly in defined media (doubling times are typically 2.5 hr in glucose-containing media) and is easier and less expensive to use for recombinant protein production than insect or mammalian cells (see table below). These positive attributes make yeast suitable for use in formats ranging from multi-well plates, shake flasks, and continuously stirred tank bioreactors to pilot plant and industrial-scale reactors.

The most commonly employed species in the laboratory are Saccharomyces cerevisiae (also known as Baker’s or Brewer’s yeast) and some methylotrophic yeasts of the Pichia genus. Both S. cerevisiae and P. pastoris have been genetically characterized and shown to perform the posttranslational disulphide bond formation and glycosylation that is crucial for the proper functioning of some recombinant proteins. However, it is important to note that yeast glycosylation does differ from that in mammalian cells: in S. cerevisiae, O-linked oligosaccharides contain only mannose moieties, whereas higher eukaryotic proteins have sialylated O-linked chains. Furthermore S. cerevisiae is known to hyperglycosylate N-linked sites, which can result in altered protein binding, activity, and potentially yield an altered immunogenic response in therapeutic applications. In P. pastoris, oligosaccharides are of much shorter chain length and a strain has been reported that can produce complex, terminally sialylated or “humanized” glycoproteins.

Answer Id: E9477

Was this answer helpful?

Yes
No
Thank you for your response

What pattern of oxygen uptake should I expect to observe during a Pichia fermentation run?

Product FAQ

Answer

It depends whether the clone is Mut+ or a MutS.

For a Mut+ clone, you should expect that initially (in the first 2-4 hours of induction), the oxygen uptake rate of the culture would be lower than that at the end of the glycerol batch phase. After the culture becomes adapted to methanol, the oxygen uptake rate will significantly increase, if the culture is healthy (i.e., not poisoned by too much methanol). One should run methanol spike tests during fermentation of Mut+ clones.

For a MutS clone, one can expect that the oxygen uptake rate will be lower than that at the end of the glycerol batch phase throughout most of the fermentation. One has to be very careful not to poison MutS clones.

Answer Id: E9538

Was this answer helpful?

Yes
No
Thank you for your response

What is the mating genotype of your Pichia strains?

Product FAQ

Answer

All of our Pichia strains are homothallic strains. This means that they actually switch mating type with each generation. In Saccharomyces strains, this would lead to the culture rapidly becoming entirely diploid. In contrast, Pichia pastoris strains mate inefficiently to form diploids. Therefore, at any given time, the cells in the population are both “a” and “alpha” mating types.

Answer Id: E9522

Was this answer helpful?

Yes
No
Thank you for your response

 Can I express complex proteins or one with a quaternary structure in Pichia pastoris? 

Product FAQ

Answer

Pichia is capable of correctly assembling proteins with a quaternary structure. One of the earliest proteins to be expressed in Pichia was the Hepatitis B Surface antigen which was assembled in its natural form, the 22nm particle (reference: Cregg (1987). "High-level expression and efficient assembly of Hepatitis B surface antigen in the methylotrophic yeast P. Pastoris". Biotechnology 5:479-485.)  In consideration of the particle assembly problem, Cregg postulated that one or more post-translational events important in the formation of particles may be slow relative to the synthesis of HBsAg protein. Therefore, he used mutS since it has a slower growth rate.

Answer Id: E4244

Was this answer helpful?

Yes
No
Thank you for your response

Is it critical that one uses PEG 4000 for yeast transformations?

Product FAQ

Answer

PEG 4000 seems to work best for yeast transformations, although PEG 3350 has been used in-house with success.

Answer Id: E9530

Was this answer helpful?

Yes
No
Thank you for your response

Can YPD be used instead of BMGY-type media for pichia fermentation?

Product FAQ

Answer

Yes. The cells will do fine in YPD but there are two drawbacks: The foaming that occurs in the richer YPD is very difficult to control. The richer media makes it difficult to purify secreted proteins from the media. The BMGY formulation remedies both of these problems.

Answer Id: E3755

Was this answer helpful?

Yes
No
Thank you for your response

Is there a recommended protocol for fermentation using constitutive expression vectors such as pGAPZ?

Product FAQ

Answer

Use the following high cell density protocol for pGAP clones. Feed carbon until the desired density is reached (300 to 400 g/L wet cell weight (WCW)). If the protein is well-behaved in the fermenter, increase to 300-400 g/L WCW as with methanol inducible clones. These densities can be reached in less than 48 hours of fermentation. We have fermented constitutive expressers on glycerol using these protocols with good results. Some modifications to the Fermentation Basal Salts Medium that you might want to make are:

1) Substitute 2% dextrose for the 4% glycerol in the batch medium.
2) Substitute 40% dextrose for the 50% glycerol in the fed-batch medium.
3) Feed the 40% dextrose at 12 mL/L/hr (Jim Cregg has published data on expression using several carbon sources as substrates; dextrose gave the highest levels of expression).
4) Yeast extract and peptone may be added to the medium for protein stability.

One warning: If you are working with His- strains, they remain His- after transformation with pGAPZ. Fermentation in minimal medium will require addition of histidine to the fermenter.

Answer Id: E9545

Was this answer helpful?

Yes
No
Thank you for your response

Will Pichia pastoris vectors (e.g., pPICZ, pPIC6, pPIC9K, pPIC3.5K, pAO815) work in Pichia methanolica? Is the TEF1 promoter functional in Pichia methanolica?

Product FAQ

Answer

No, Pichia pastoris vectors will not work in Pichia methanolica; both Pichia pastoris and Pichia methanolica vectors have promoters derived from alcohol oxidase but they are not homologous, so the Pichia pastoris vectors will not be able to integrate or replicate in Pichia methanolica. The TEF1 promoter is probably functional in Pichia methanolica.

Answer Id: E9509

Was this answer helpful?

Yes
No
Thank you for your response

What choices do you offer for protein expression in a yeast host system, and what are their features?

Product FAQ

Answer

We offer the original Pichia pastoris expression systems, PichiaPink™ expression system, and Saccharomyces cerevisiae yeast expression system for expression of recombinant proteins. Both P. pastoris and S. cerevisiae have been genetically well-characterized and are known to perform many posttranslational modifications.

The P. pastoris expression system combines the benefits of expression in E. coli (high-level expression, easy scale-up, and inexpensive growth) and the advantages of expression in a eukaryotic system (protein processing, folding, and posttranslational modifications), thus allowing high-level production of functionally active recombinant protein. As a yeast, Pichia pastoris shares the advantages of molecular and genetic manipulations with Saccharomyces cerevisiae, and it has the added advantage of 10- to 100-fold higher heterologous protein expression levels. These features make Pichia pastoris very useful as a protein expression system. The Pichia expression vectors contain either the powerful alcohol oxidase (AOX1) promoter for high-level, tightly controlled expression, or the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter for high-level, constitutive expression. Both inducible and constitutive expression constructs integrate into the P. pastoris genome, creating a stable host that generates extremely high protein expression levels, particularly when used in a fermentor. The Pichia pastoris expression systems we offer include:

- PichiaPink™ Yeast Expression System: Newer Pichia pastoris expression system that contains both low- and high-copy plasmid backbones, 8 secretion signal sequences, and 4 yeast strains to help optimize for the highest yield possible of the recombinant protein. All PichiaPink™ vectors contain the AOX1 promoter for high-level, inducible expression and the ADE2 marker for selecting transformants using ADE2 complementation (i.e., by complementation of adenine auxotrophy) rather than antibiotic selection. However, they express the ADE2 gene product from promoters of different lengths, which dictate the copy number of the integrated plasmids. The pPink-LC vector has an 82 bp promoter for the ADE2marker and offers low-copy expression, and the pPink-HC vector has a 13 bp promoter for the ADE2marker and offers high-copy expression. The system also includes the pPinkalpha-HC vector (containing S. cerevisiae alpha-mating factor pre-sequence) for high copy number secreted expression, and provides eight secretion signal sequences for optimization of secreted expression.
- EasySelect™ Pichia Expression Kit: One of the original Pichia expression kits that contains the pPICZ and pPICZalpha vectors, for intracellular and secreted expression, respectively, of the gene of interest. These vectors contain the AOX1 promoter for high-level, inducible expression and the Zeocin™ antibiotic resistance marker for direct selection of multi-copy integrants. They facilitate simple subcloning, simple purification, and rapid detection of expressed proteins.
- Original Pichia Expression Kit: The kit includes the pPIC9, pPIC3.5, pHIL-D2, and pHIL-S1 vectors, each of which carries the AOX1 promoter for high-level, inducible expression and the HIS4 gene for selection in his4 strains, on histidine-deficient medium. pPIC9 carries the S. cerevisiae alpha-factor secretion signal while pHIL-S1 carries the Pichia pastoris alkaline phosphatase signal sequence (PHO) to direct transport of the protein to the medium. pHIL-D2 and pPIC3.5 are designed for intracellular expression.
- Multi-Copy Pichia Expression Kit: This kit is designed to maximize expression and contains the pPIC3.5K, pPIC9K, and pAO815 vectors, which allow production and selection of Pichia strains that contain more than one copy of the gene of interest. They allow isolation and generation of multicopy inserts by in vivo methods (pPIC3.5K and pPIC9K) or in vitro methods (pAO815). All of these vectors contain the AOX1 promoter for high-level, inducible expression and the HIS4 gene for selection in his4 strains, on histidine-deficient medium. The pPIC9K vector directs secretion of expressed proteins while proteins expressed from pPIC3.5K and pAO815 remain intracellular. The pPIC9K and pPIC3.5K vectors carry the kanamycin resistance marker that confers resistance to Geneticin™ Reagent in Pichia. Spontaneous generation of multiple insertion events can be identified by resistance to increased levels of Geneticin™ Reagent. Pichia transformants are selected on histidine-deficient medium and screened for their level of resistance to Geneticin™ Reagent. The ability to grow in high concentrations of Geneticin™ indicates that multiple copies of the kanamycin resistance gene and the gene of interest are integrated into the genome.
- For expression in S. cerevisiae, we offer the pYES™ Vector Collection. Each pYES™ vector carries the promoter and enhancer sequences from the GAL1 gene for inducible expression. The GAL1 promoter is one of the most widely used yeast promoters because of its strong transcriptional activity upon induction with galactose. pYES™ vectors also carry the 2m origin and are episomally maintained in high copy numbers (10-40 copies per cell).

Answer Id: E9478

Was this answer helpful?

Yes
No
Thank you for your response

What can be used as an acid to adjust the pH of Pichia fermentation media? Do I even need to adjust the pH?

Product FAQ

Answer

You need not add any acid to Pichia fermentation media. A healthy culture always acidifies the medium. If the pH of the culture is increasing, it is a sign of carbon source depletion or ill health of the culture.

Answer Id: E9539

Was this answer helpful?

Yes
No
Thank you for your response

What is the purpose of including sorbitol in the YPD plates used for plating Pichia cells after electroporation?

Product FAQ

Answer

Inclusion of 1 M sorbitol in YPD plates stabilizes electroporated cells, as they appear to be somewhat osmotically sensitive.

Answer Id: E9531

Was this answer helpful?

Yes
No
Thank you for your response

What is the codon usage for Pichia?

Product FAQ

Answer

It is doubtful as to whether codon usage plays as great a role in general, as is commonly believed. Translation initiation is probably more of a rate-limiting step than elongation.
Use the following codon usage list to design your gene in the order of preference:

Glycine: GGT or GGA
Glutamic acid: GAG or GAA
Aspartic acid: GAC or GAT
Valine: GTT or GTC
Alanine: GCT or GCC
Arginine: AGA or CGT
Serine: TCT or TCC
Lysine: AAG
Asparagine: AAC
Methionine: ATG
Isoleucine: ATT or ATC
Threonine: ACT or ACC
Tryptophan: TGG
Cysteine: TGT
Tyrosine: TAC
Leucine: TTG or CTG
Phenylalanine: TTC
Glutamine: CAA or CAG
Histidine: CAC or CAT
Proline: CCA or CCT

Answer Id: E9492

Was this answer helpful?

Yes
No
Thank you for your response

Do you have any protocols for Pichia fermentation?

Product FAQ

Answer

We do not offer any protocols for Pichia fermentation. Please refer to the document titled “Pichia Fermentation Guidelines” on our website.

Answer Id: E9533

Was this answer helpful?

Yes
No
Thank you for your response