Next-generation sequencing (NGS) is a high-throughput methodology that enables rapid sequencing of the base pairs in DNA or RNA samples. Supporting a broad range of applications, including gene expression profiling, chromosome counting, detection of epigenetic changes, and molecular analysis, NGS is driving discovery and enabling the future of personalized medicine.

Comprehensive solutions

NGS research areas and applications

Human NGS research areas

Inherited disease research

From targeted gene panels to RNA expression and aneuploidy detection

HLA typing  

Genotyping Class I and Class II loci

Cancer research

From basic to translational to clinical research

Human identification (HID)

From genotyping to STRs to mitochondrial DNA

Reproductive health research

From pre-implantation to congenital research

Infectious disease

From viruses to microbial communities

Additional NGS research areas


Leading in NGS

What is Ion AmpliSeq Chemistry?

Ion Torrent targeted NGS solutions are built on industry-leading Ion AmpliSeq technology. What is AmpliSeq? Watch this 4 minute video to find out more.

Targeted NGS performance of Oncomine Assays and NCI-MATCH Trial Assay

The Oncomine Comprehensive Assay and NCI-MATCH Trial Assay (based on the Oncomine Comprehensive Assay) have demonstrated robust performance even with very limited FFPE samples. See the data ›

New to Sanger or NGS?

Build your NGS knowledge in the Sequencing Education Center.


Featured application: liquid biopsy research

From sample to answer, Ion Torrent technology enables comprehensive solutions for analysis from cell-free DNA (cfDNA).

Check out our new cfDNA white paper that discusses the analytical methods used in verification of the Oncomine Lung cfDNA Assay with the Ion S5 XL System.

Highlights:

  • Our complete Oncomine cfDNA NGS workflow was used in this evaluation, including orthogonal verification with dPCR
  • Samples evaluated include plasma, FFPE, hotspot controls, and reference standards

Data generated and analyzed demonstrate that the Ion Torrent NGS workflow using Oncomine cfDNA assays is reliable, and generates repeatable and reproducible results.

Download white paper ›


How does Ion Torrent NGS work?

Ion Torrent next-generation sequencing exploits the fact that addition of a dNTP to a DNA polymer releases a hydrogen ion. We measure the pH change resulting from those hydrogen ions using semiconductors, simultaneously measuring millions of such changes to determine the sequence of each fragment.

The semiconductor approach—unlike optics or modified nucleotides used in other NGS technologies—helps you implement a fast and simple workflow that scales to your research needs across multiple applications including inherited disease, oncology, infectious disease, human identification (HID), human leukocyte antigen (HLA) typing, and agrigenomics.

Our targeted sequencing approach introduces a PCR-based sequence enrichment step using Ion AmpliSeq technology that focuses on genes or even genetic variants of interest; a good example is the targeting of oncogenes and tumor suppressors in a cancer research study.

Learn more about sequencing ›

Support

NEW   Next-Generation Sequencing Support Center
Find tips, troubleshooting help, and resources for your next-gen sequencing applications.