Stem Cell Webinars

Expand Your Knowledge in Stem Cell Research Topics

For more than a decade, we've provided you with key resources to address challenges in stem cell research, including Gibco® stem cell culture products, a broad portfolio of Invitrogen™ stem cell differentiation and engineering products, and a wide array of stem cell analysis tools that include Molecular Probes® labeling and detection reagents. We’ve developed webinars on selected topics in stem cell research and analysis to help you extend your knowledge and move forward in your research.

Register and Listen to Webinars

Date Webinar
On demand

Essential 8 Flex Medium: Eliminating daily feeding in a feeder-free, xeno-free PSC culture system

Pluripotent stem cells (PSCs) are powerful tools for developmental biology, regenerative medicine, and the study of debilitating human diseases. While the development of feeder-free culture systems such as Essential 8™ Medium has simplified and standardized routine PSC culture, additional hurdles continue to challenge today’s stem cell scientists. Prominent among these is the need for daily media exchanges to maintain healthy PSC cultures, a requirement largely driven by the loss of activity in critical media components at 37°C. Here, we introduce Essential 8 Flex Medium, a xeno-free PSC culture medium that eliminates the need for daily feeding without requiring very low seeding densities or other significant changes to current PSC culture protocols. Our data show that sensitive PSC medium components in Essential 8 Flex Medium experience virtually no loss of bioactivity for periods of up to 72 h at 37°C, thereby enabling PSC culture that fits into a standard five day workweek. Long-term, weekend-free culture experiments further demonstrate that Essential 8 Flex supports stable pluripotency marker expression, robust trilineage differentiation potential, and normal karyotypes through at least 30 passages. Taken together, Essential 8 Flex Medium allows for routine weekend-free maintenance and expansion of PSCs without negatively impacting culture quality and without substantial protocol adjustments.

On demand

Antibodies for stem cell research

With the recent technological advances, diverse stem cell lines are derived and cultured under different conditions. Additionally, various differentiation protocols have been developed and optimized to generate mature functional differentiated cells from these stem cells. There is a huge need for reliable characterization methods to confirm the quality of the pluripotent stem cells and adult stem cells, as well as their differentiated derivatives. Current characterization practices consist of panels of assays primarily testing fundamental properties such as potency, analyzing the expression of key markers for cell identity, and detecting abnormalities that can affect cell behavior and safety. Antibody-based detection methods such as immunocytochemistry and flow cytometry are commonly used. High quality of the antibodies is one of the key factors contributing to the success and rapid progress of stem cell research. We offer a comprehensive library of primary antibodies for stem cell research. This presentation will provide an overview of stem cells and introduce some of our antibodies for the characterization of pluripotent stem cells, various adult stem cells such as mesenchymal stem cells and neural stem cells, and downstream functional mature cells.

On demand

Differentiation of midbrain floor plate progenitors and dopaminergic neurons from human pluripotent stem cells

Midbrain dopaminergic (DA) neurons derived from human pluripotent stem cells (hPSCs) provide an excellent source for disease modeling and drug screening for Parkinson’s disease.  During brain development, midbrain floor plate (mFP) is formed during 21-28 days of gestation along the ventral midline of developing neural tube and it has been shown that midbrain DA neurons are differentiated from mFP cells. Recent reports have focused on identifying the appropriate in vitro conditions to differentiate hPSCs to properly regionalized floor plate precursors, rather than a more general neural stem cell population, in order to create authentic DA neurons.  However, published protocols are quite lengthy and complicated leading to increased variability in differentiation efficiencies. Also, few reports describe whether specified progenitors can be expanded and cryopreserved. Our objective is to develop a culture media system designed to simplify and standardize this process while compressing timelines and adding increased flexibility in this complex differentiation workflow.  Here we describe our results which have broken the process down into 3 distinct steps: (1) specification of hPSC to midbrain floor plate (mFP) cells, (2) expansion and cryopreservation of derived mFP cells, and (3) maturation to DA neurons. Characterization of floor plate cells and mature DA neurons was performed by immunostaining for the presence of specific markers including Lmx1, Otx2, FoxA2 and TH, additional qPCR analysis included expanded lists of genes to help define these cell populations.  Electrophysiological characteristics of differentiated neurons were assessed by Multi-electrode array and spontaneous and depolarization induced dopamine release was measured with HPLC. In comparison to published protocols, our new system has several advantages including ease of use, significant expansion and preservation of progenitors in relatively short culture duration.  This efficient system will benefit researchers with increased scale and flexibility in targeted studies.

On demand

Epigenetic regulation in stem cells and reprogramming

Human pluripotent stem cells (PSCs) can give rise to all cell types in the body and therefore hold enormous potential for tissue engineering and disease modeling. Here I will summarize our more recent advances in understanding the role of epigenetic mechanisms in regulating this unique cell state.

On demand

Genome editing and stem cell engineering for disease modeling

The ability to create accurate disease models of human monogenic and complex genetic disorders is very important for the understanding of disease pathogenesis and the development of new therapeutics. Although proof of principle using adult stem cells for disease modeling has been established, induced pluripotent stem cells (iPSCs) have been demonstrated to have the greatest utility for modeling human diseases. Additionally, the latest advances in programmable nucleases have empowered researchers with genome editing tools, such as CRISPR/Cas9, that substantially improve their ability to make precise changes at a defined genomic locus in a broad array of cell types including stem cells. While the utility of these tools is improving, there are several key factors, including design and delivery that should be taken into account to ensure maximum editing efficiency and specificity. Already, these tools have allowed us to efficiently knock out genes and generate single nucleotide polymorphism (SNP) iPSCs. This ability to modify target genomic loci with high efficiency will facilitate the generation of novel genetically modified stem cells for research and therapeutic applications.

On demand

Highly efficient genome editing and cell engineering in stem cells using CRISPR/Cas9

Advances in genome editing has empowered researchers with highly efficient and versatile gene editing tools like Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) system thereby making it relatively easier to target user defined endogenous genes in a sequence specific manner. Stem cells have been a preferred platform for various applications including gene function analysis, drug screening disease modeling, and tissue engineering. Therefore novel tools that enable rapid and precise gene manipulation in stem cells are required.  Presented here are CRISPR/Cas9 tools and workflows that allow accurate design and rapid synthesis of gRNA along with delivery of Cas9 protein/gRNA RNP complexes into a variety of cells through optimized transfection reagents or electroporation. Discussed here are the results from different CRISPR/Cas9 formats tested in stem cells. Using these formats we have edited mouse embryonic stem cells (ESCs) and human iPSCs with up to 80% to 60% genomic cleavage efficiencies, respectively. The methods described here facilitate efficient disease model generation thereby accelerating research in the field of gene therapy and regenerative medicine.

On demand

Improved T cell function and in vivo engraftment of CAR-T cells expanded ex vivo with CTS Immune Cell SR

Our findings support a strategy to substitute human AB serum with a xeno-free supplement (CTS™ Immune Cell SR) in T cell experimental protocols without compromising performance, while also reducing concerns of experimental variability and process scalability. Because this new supplement meets USP 1043 Requirements for Ancillary Materials for Cell, Gene and Tissue Engineered Products and is manufactured with a scalable cGMP process to ISO13485 standards, the implication of these results is that scale-up and risk-mitigation could become lesser concerns for our fast-growing immunotherapy industry.

On demand

Pluripotent stem cell characterization methods

Pluripotent stem cells (PSCs) have the ability to self-renew and, with the right cue, differentiate into a wide variety of cell types representative of the three germ layers. This makes PSCs like embryonic stem cells (ESCs), powerful tools for drug screening and cell therapy, more so with the development of reprogramming technologies that enable the creation of induced pluripotent stem cells (iPSCs) from donor-derived somatic cells. With all of the recent technological advances, iPSCs can now be derived from various somatic cells using different reprogramming methods and can be cultured with different media and matrices. As diverse PSC lines are derived and cultured under different conditions, there is a need for reliable characterization methods to confirm the quality of the PSCs. Current PSC characterization practices consist of a panel of assays primarily testing functional pluripotency and detecting abnormalities that can affect cell behavior and safety. Here we describe the basic and common PSC characterization practices in the context of reprogramming and the derivation of a new iPSC line.

On demand

Pluripotent stem cell culture systems: Identification of appropriate medium, matrix, and passaging reagents for your stem cell workflow need

Pluripotent stem cells (PSCs) provide much promise in development of cellular models to understand the fundamental basis for disease, as well as providing tools to facilitate drug discovery and development of cellular therapies.  While stem cells have a tremendous proliferative capacity, proper selection of medium, matrix, and associated passaging reagent is critical to ensure optimum survival and maintenance of pluripotency and trilineage potential of PSCs in long term culture.  Here we will review the feeder-dependent and feeder-free culture systems available from Thermo Fisher Scientific and discuss the advantages and disadvantages of each system.  In addition, we will provide helpful tips and tricks to assist in successful transition of feeder-dependent PSCs to feeder-free culture in Essential 8™ Medium.  Please join us for this informational seminar to help you in identifying the optimum PSC culture system for your experimental needs.

On demand

PSCs to cardiomyocytes in three steps

A simplified and reliable media system for generating cardiomyocytes from donor- or disease-specific human pluripotent stem cells (PSC) would provide a valuable source of cells for basic and translational research. Current protocols have led to heterogeneous results with varying purity and long lead times for generation of cardiomyocytes. As a result, we developed, tested and manufactured a GMP-grade culture media system that is scalable and can be used to generate large numbers of continuously maintained or cryopreserved cardiomyocytes.

On demand

Thermo Fisher Scientific’s cell therapy capabilities

Thermo Fisher Scientific is a world leader in life sciences tools and technologies. We are constantly innovating and working to bring better technologies to support cutting edge science and the application of science in medicine. While cell therapies are moving towards commercialization, we are continuing to evolve our products, services and capabilities to better support the scientific, quality and regulatory demands of the industry.  In this talk we will discuss the ways in which Thermo Fisher is using its resources to create simpler, more effective and efficient workflows in cell therapy applications.