
Soil Contaminants and Sources of Soil Contamination
Soil can be contaminated with heavy metals, pesticides, petroleum hydrocarbons (PHCs), PAHs, and explosives.
-
- Heavy metals such as lead, cadmium, mercury, and arsenic (metalloid), are extremely toxic and can lead to severe organ problems and can even lead to cancer.
-
- Pesticides designed to target insect nervous systems can also poison human beings.
-
- Some PAHs, produced from incomplete combustion of fuels, are carcinogens.
-
- Explosives such as dinitrotoluene (DNT) are also carcinogens.
-
- Most of the hydrocarbons are petroleum-based and they act as central nervous system (CNS) depressants; long-term exposure can result in permanent CNS damage.
These soil contaminants can come from different sources:
-
- Agricultural activity (Fertilizers): heavy metals
-
- Agricultural activity (Pesticides): lead and arsenic
-
- Landfills: pesticides, heavy metals and PHCs
-
- Automobile repair and storage: PAHs and PHCs
-
- Gasoline spills: PHCs
-
- Highway traffic: lead and PAHs
-
- Military forces: explosives
-
- Fires: PAHs
Soil Contaminant Testing
Soil contaminants can be analyzed using different techniques depending on the contaminants. Multiple EPA SW846 Methods are available for testing these contaminants in soil and are good references if similar analysis needs to be done. For screening purposes, heavy metals can be conveniently tested using the XRF technique (EPA Method 6200) without taking the soil out of the ground. But a more accurate and sensitive analysis is conducted using ICP-OES (EPA Method 6010). As an ideal technique for high matrix samples, such as soils, ICP-OES provides the advantage of wide dynamic range and multi-element detection capability.
For pesticides in soil, multiple techniques are available for analysis from IC-MS/MS, GC-MS, GC-MS/MS, LC-MS/MS to GC or LC coupled with high resolution mass spec. Multiple analytical methods for individual pesticides can be found on the EPA website.
For PAHs in soil, gas chromatography (EPA 8100) or the combination of gas chromatography and mass spectrometry (EPA Method 8270) is used to identify multiple isomers and similar compounds in the soil samples. The EPA8270D Analyzer Kit helps implement and manage the analytical method. In addition, HPLC (EPA Method 8310) is also a common technique used to analyze PAHs, which provides better separation compared to the stand-alone GC technique.
Explosives in soil are often determined by gas chromatography, such as in EPA Method 8095. However, some explosives are heat labile and nonvolatile and are determined by high performance liquid chromatography (EPA Method 8330).
For PHCs, measurement of total hydrocarbons (THCs) becomes challenging because the whole spectrum contains volatiles, semi-volatiles, and non-volatiles fractions. Different sample preparation techniques are necessary for different fractions. After sample preparation, the samples can be analyzed by gas chromatography using different detectors depending on the resolution and level of information needed. For semi-volatile hydrocarbons, the most common procedure is EPA Method 8515B using flame ionization detector (FID). A more sophisticated method such as EPA Method 8270, may also be used.
Additional Information
You can find additional information for soil contaminant analysis: