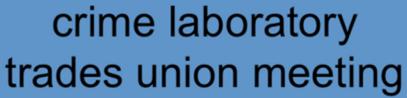

EVALUATION OF THE PRECISION ID SYSTEM FOR TARGETED SEQUENCING OF DNA AND RNA MARKERS FOR HUMAN IDENTITY AND BODY FLUID IDENTIFICATION

Jack Ballantyne HIDS, Barcelona, Spain 2016

Next Generation Sequencing


- NGS is set to revolutionize forensic biology
 - Enabling the recovery of more identifying and intelligence information
 - From a wide variety of different single, mixed source and degraded samples
- It will be several years before NGS totally supplants current CE technology
 - However, labs can TODAY begin to use NGS for certain cases
- Significant advancements in:
 - Automation of library and template preparation and sequencing
 - Forensic sequencing kits
 - Software solutions for downstream genotyping analysis
- Ion ChefTM System and Ion S5TM System
 - DNA analysis for human identification
 - RNA analysis for body fluid identification

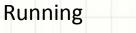
"All those in favour of accepting more robots?"

Evaluation of the EA Precision ID GlobalFiler™ Mixture ID Panel, Ion S5™ System and Ion Chef™ System

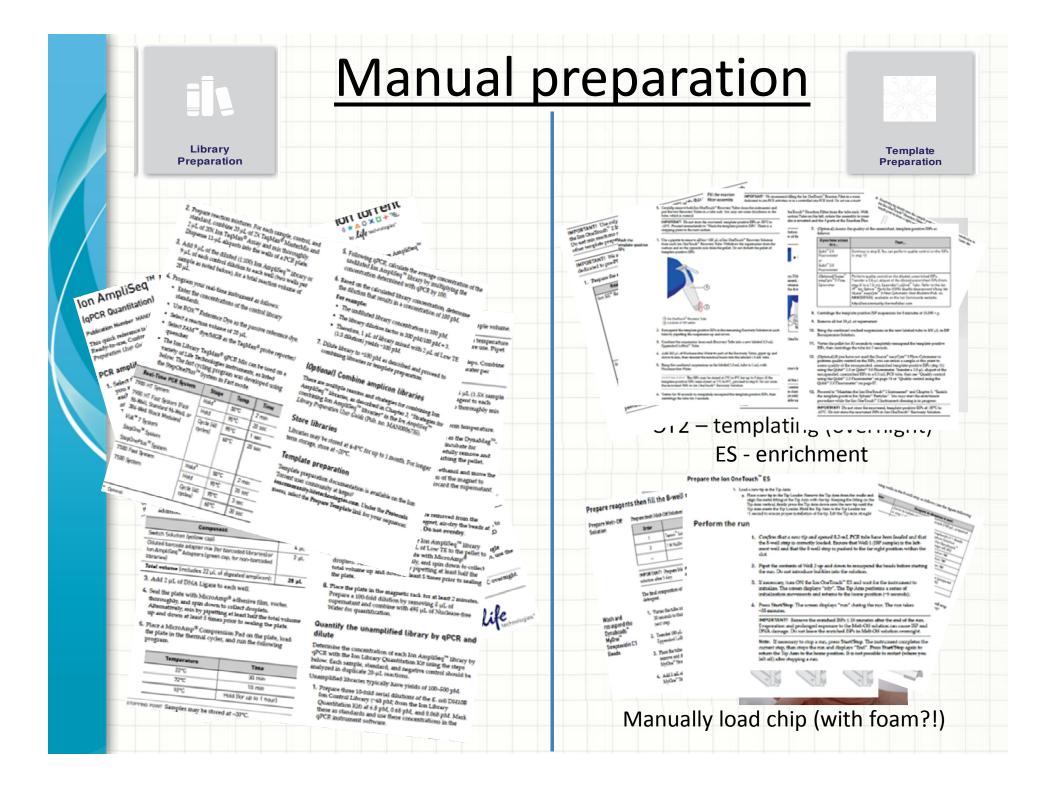
"All those in favour of accepting more robots?"

Evaluation of the EA Precision ID GlobalFiler™ Mixture ID Panel, Ion S5 System and Ion Chef System

Ion Chef™ System


Automates library, template preparation, & chip loading!

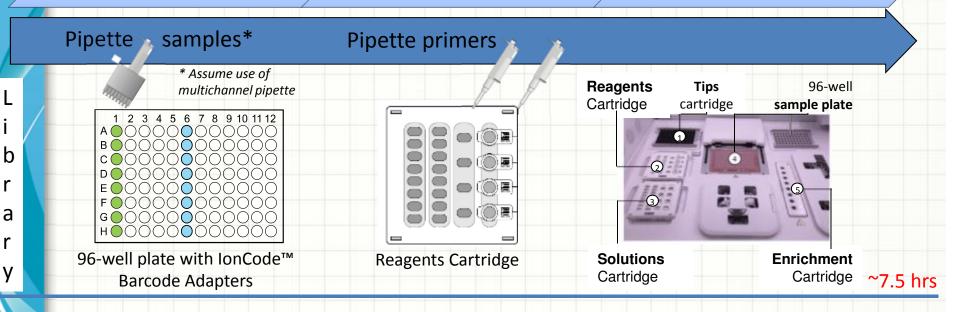
Oh no!!


Which Chef would you prefer?

- Automated
- ~15 min or less prep time
- Fewer errors!

- Manual/Hands-on
- Hundreds of steps days to complete
- Error-prone?

Action 1


Add 8 samples (1ng/sample) to 96-well plate

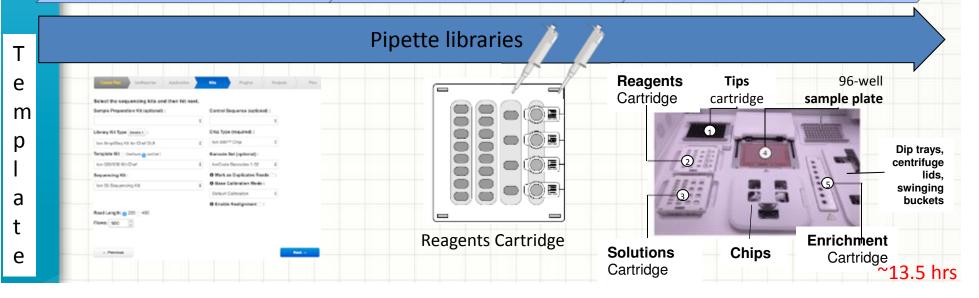
Action 2

Add Precision ID Panel to Reagents Cartridge

Action 3

Snap 5 cartridge components onto Ion Chef deck

Action 1

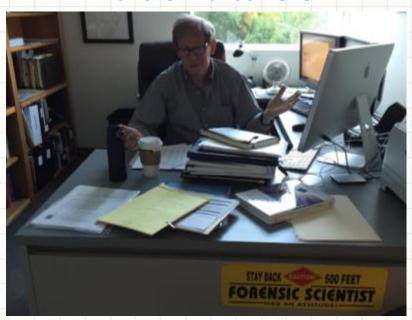

Plan Run in Ion Torrent Broweser

Action 2

Add Libraries to Reagents Cartridge

Action 3

Snap cartridge components onto Ion Chef deck

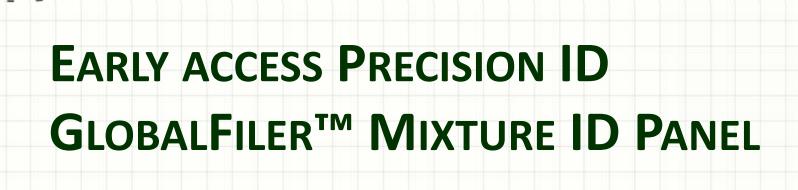

While the Chef is working...

With the Ion Chef System

- Hands-off time while the chef is running
- Work does not pile up
- Time for a break!

With the 'Manual' Chef

- Hands-on time in the lab
- Work piles up!!!
- No time for a break!


Ion S5™ System

- Load-and-go reagents
- Straightforward user interface
- Less than 15 min of hands-on time

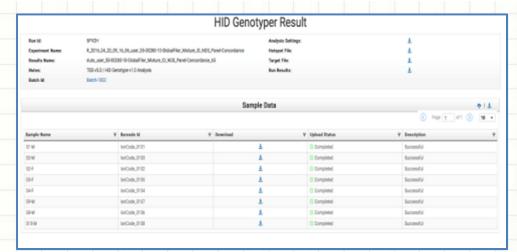
Reads 3–5 million 15–20 million 6	60–80 million	
200 bp 0.6–1 Gb 3–4 Gb	10–15 Gb	
Output' 400 bp 1.2–2 Gb 6–8 Gb	_	
200 bp 2.5 hr 2.5 hr	2.5 hr	
400 bp 4 hr 4 hr	-	
200 bp 5 hr 8 hr	16.5 hr	
400 bp 8 hr 17.5 hr	-	

ION CHEF™ SYSTEM — ION S5™ SYSTEM
CONVERGE™ SOFTWARE

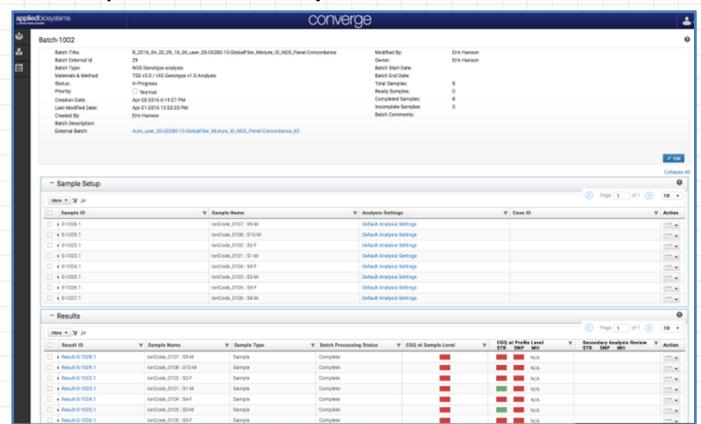
EA Precision ID GlobalFiler™ Mixture ID Panel

Type of Target	Number of Targets
Autosomal STRs	29
Y-STRs	1
Autosomal SNPs	42
Y-SNPs	2
Indels	2 (Amel and Y indel)
Microhaplotypes	36 clusters of 2 to 4 SNPs

Ion 530 Chip

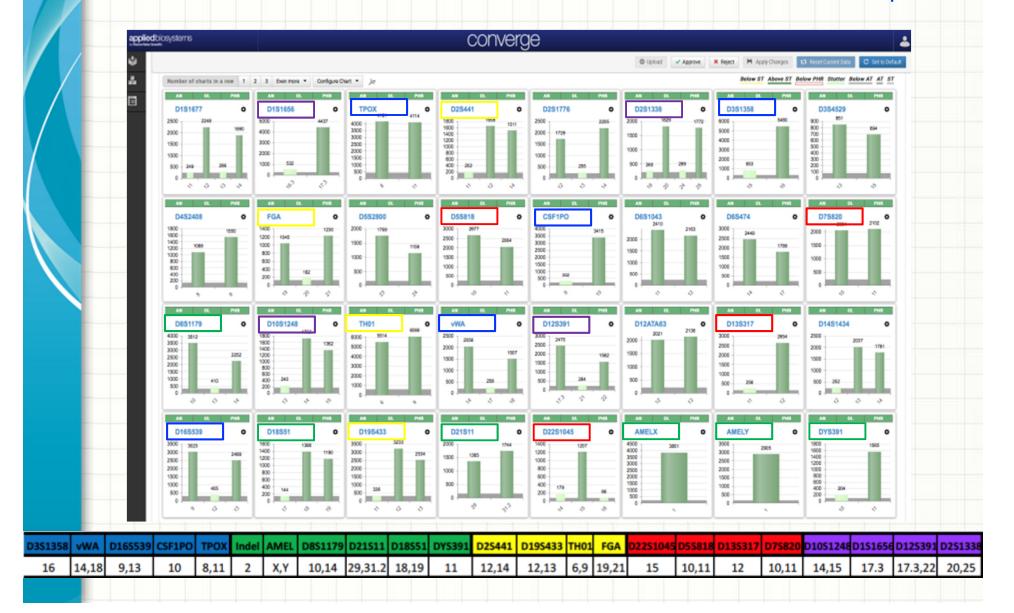

113 targets in the human genome in a single reaction!!

Designed to work on challenging samples that perform poorly in CE systems


Testing & Evaluation Studies

Study	# Samples	Library quant (pM)	Chip loading	# Reads	Total Bases	
Concordance	8	50	63%	4.1 M	541 M	
Sensitivity (250pg, 125pg)	8	47	77%	4.0M	520 M	
Casework	16	116 79	60%	10.7M	1.22 G	
samples	8		in progress			

- Mixture studies to be completed next:
 - Male/female
 - Male/female multiple contributor



Data exported directly into CONVERGE software

Concordance

- 8 single source samples
 - 5 male, 3 female
 - Compared to CE GlobalFiler™ results
- All GlobalFiler™ loci concordant with NGS panel!

Sensitivity – Autosomal STRs

		STRs					
Sample Input (pg)	Input (pg)	Total Reads	Avg. Reads (Per Locus)	Min Reads (Locus)	Max Reads (Locus)		
S2	250	97,680	3368	893 D22S1045	6637 TH01		
Female	125	96,096	3314	924 D22S1045	6758 TH01		
S 3	250	88,812	3063	651 D22S1045	5630 TH01		
Male	125	113,218	3904	915 D22S1045	7200 <i>TPOX</i>		
S4	250	100,085	3451	731 <i>D22S1045</i>	7963 TPOX		
Female 125	125	111,909	3859	864 D22S1045	9291 TPOX		
S9	250	75,510	2604	127 D19S433	5665 TH01		
Male	125	101,648	3505	817 D22S1045	7243 TH01		

Total reads = main alleles only (doesn't include stutter)

16 Casework Samples

Sample	Description	Deg. Index	Trio S. Auto (ng/ul)	conc	input vol (ul)	input (ng)	Baro	ode
C10	Blood - polyester - room temp 1 year	1.0	0.978	0.0685	15	1.03	109	
C11	Blood (Male) - 37oC 6 months	0.6	15.518	0.0670	15	1.01	110	
C12	Blood (Male) - 37oC 1 year	0.8	17.005	0.0670	15	1.01	111	
C13	Saliva (Female) - 37oC 6 months	1.2	6.285	0.0670	15	1.01	112	vollow
C14	Saliva (Female) - 37oC 1 year	1.4	9.416	0.0670	15	1.01	113	yellow
C15	Blood (Female) - Car Trunk 2 weeks	0.9	3.200	0.0670	15	1.01	114	
C16	Blood (Male) - Car Back Seat 1 week	0.7	4.054	0.0670	15	1.01	115	
C17	Blood (Female) - Car Back Seat 1 week	0.6	0.871	0.0670	15	1.01	116	
C18	Dried chewing gum	0.8	0.200	0.0670	15	1.01	117	
C19	Drink can (perrier) - mouth area	0.8	0.348	0.0696	15	1.04	118	
C20	Spit on pavement (dried)	2.6	0.008	0.0075	15	0.11	119	
C22	Menstrual blood	0.6	14.463	0.0670	15	1.01	120	blue
C23	Vasectomized male - semen	0.7	0.112	0.0659	15	0.99	121	blue
C7.2	Semen on denim - 56oC 1 month	0.8	0.743	0.0675	15	1.01	122	
C7.3	Vaginal swab - 56oC 6 months	1.6	20.549	0.0670	15	1.01	123	
C8.3	Vaginal swab - 37oC 2 years	2.3	33.468	0.0670	15	1.01	125	

Libraries combined to run 16 samples on one Ion 530 Chip

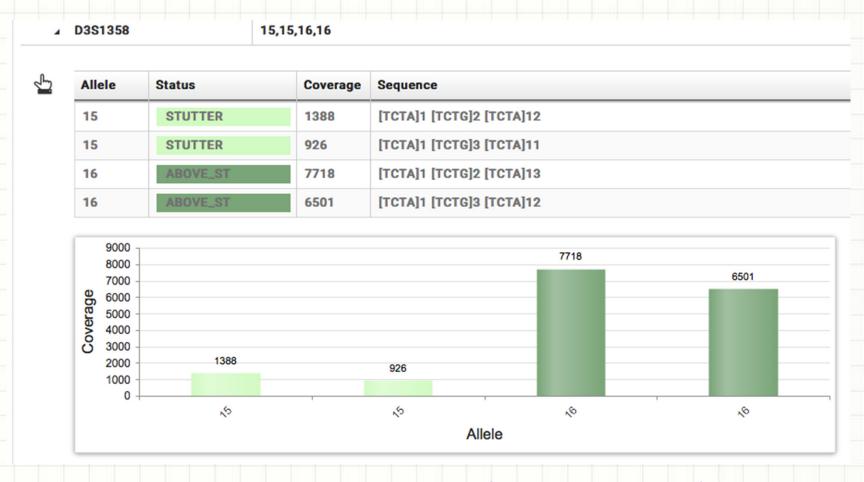
6 blood	9 unique donors
5 saliva	- some samples from the same donor
2 semen	
1 menstrual blood	 Full STR profiles from 15/16 samples
2 vaginal	 'Spit' on pavement – partial profile; low level mixture
	(a lot of information still obtained!)

Blood – Car Back Seat 1 week!

Full profiles: STR, SNP, MH

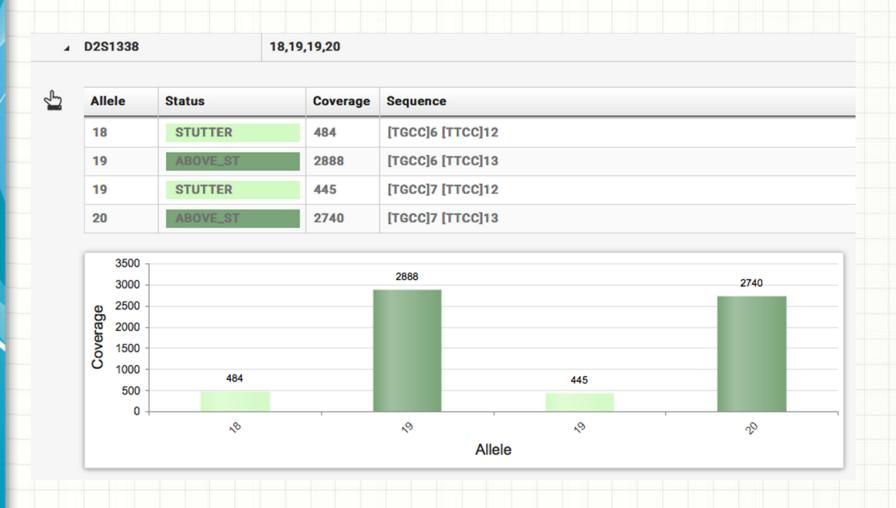
Vaginal swab - 37°C 2 years!

Full profiles: STR, SNP, MH

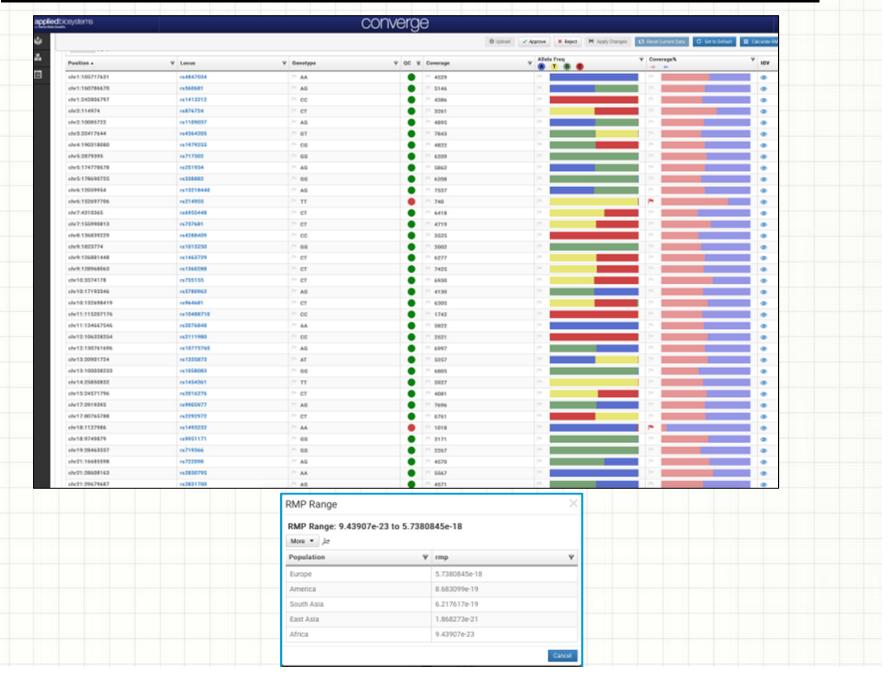


Chewing gum (~4-5 days old) STR, SNP, MH D1S1677 TPOX D2S441 D2S1776 **New STR New STR** 8 11 17.3 ¢ ¢ D128391 D12ATA63 D13S317 D14S1434 D16S539 **New STR New STR** 17.3 22

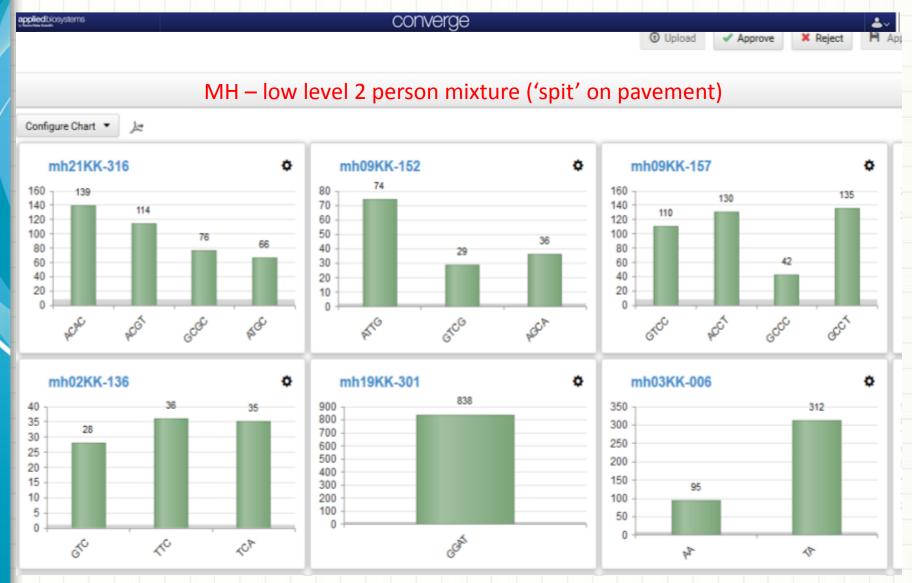
Full profiles:


'Spit' on pavement C20 210 350 280 420 120-14 18 9 13 10 16 11 17 12 **GlobalFiler results** D3S1358 15,16,16,17 **D3S1358 TPOX** 8,11 Sequence 15 [TCTA]1 [TCTG]2 [TCTA]12 [TCTA]1 [TCT6]1 [TCTA]14 [AATG]11 [TCTA]1 [TCTG]2 [TCTA]13 [TCTA]1 [TCTG]3 [TCTA]13 800 700 600 500 300 400 300 200 Allele 16, 17 identified in both systems NGS – '8' allele not detected with NGS – additional '16' (second donor?) GlobalFiler result

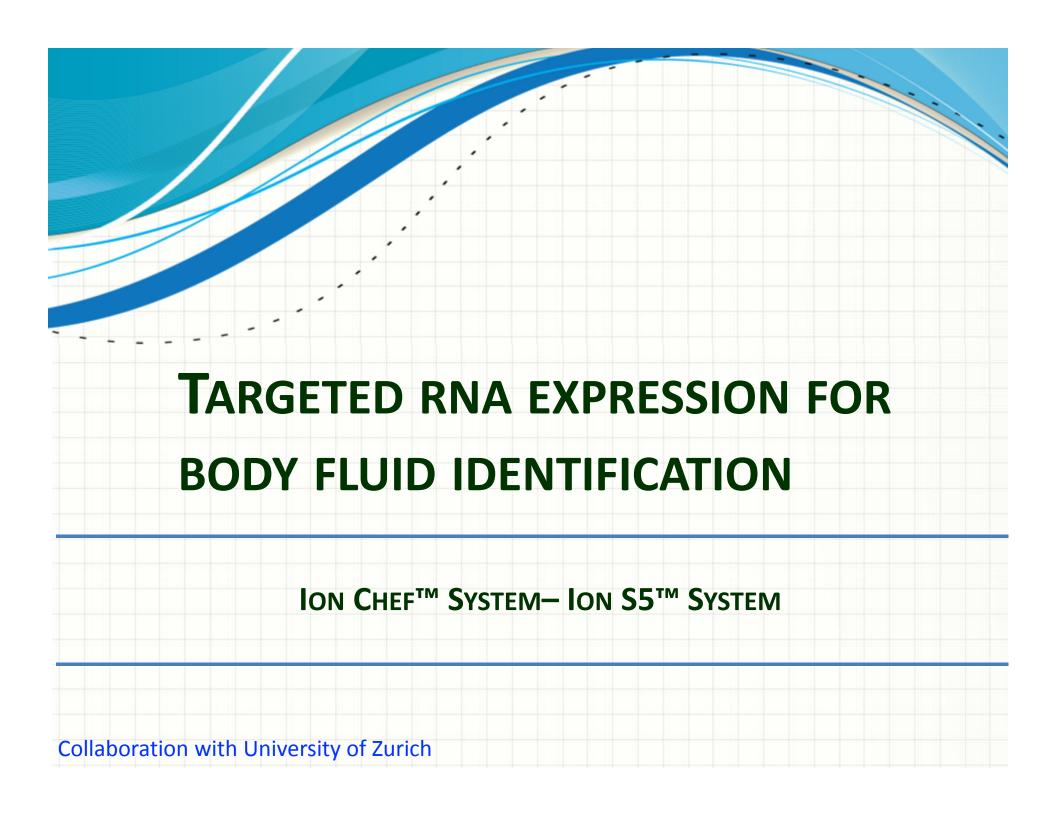
Extra Discrimination – Sequence Level


Hetero-homozygous (as Rob calls it)
Compound heterozygous (as the rest of
the World calls it)

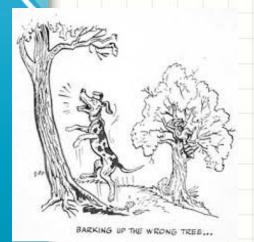
Extra Discrimination – Sequence Level

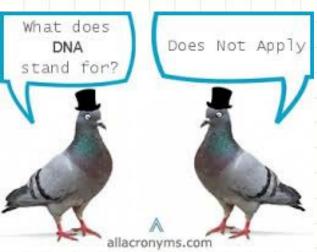


'19' stutter (from 20 allele) different sequence than main '19' allele


Additional Identity Information - SNPs

Additional information - MH




Will be especially used in mixture studies to help in determining # of donors!

why

irrelevance?

activity = what?

Body Fluid/Tissue Source ID

- Whole Transcriptome versus Targeted RNA re-sequencing
- Digital gene expression (DGE)-counts how many copies of a transcript in a sample
 - Facilitates quantitative approaches
- Can detect mixtures
- After cDNA formation, same process as gDNA
- Multiplex sequence analysis-multiple genes in multiple samples (and RNA + DNA co-analysis?)
- Associate a body fluid biomarker with a DNA profile (i.e. the donor)?

Methods

Ion AmpliSeq[™] Kit for Chef DL8 Kit

gDNA or RNA sample preparation

.

Perform reverse transcription (RNA only) SuperScript™ VILO™
20ng total RNA

(Optional) Create a Sample Set

•

Add Ion AmpliSeq™ 2X Primer Pools to Positions A and B of the Reagents cartridge

.

Add gDNA to the IonCode™ Barcode plate

.

Load the Ion Chef™ Instrument

.

Start the Ion Chef™ run

•

Unload the Ion Chef™ Instrument

Custom Ion AmpliSeq™ Primer Pool

Body fluid	Gene	BFP1 (61plex)	BFP2 (37plex)
	Blood-1	New York	S. Commission
	Blood-2		
	Blood-3		
Blood	Blood-4		
	Blood-5		
	Blood-6 Blood-7		
	Blood-8		
	Semen-1		
	Semen-2		
	Semen-3		
Semen	Semen-4		
4.00000000000	Semen-5		
	Semen-6		
	Semen-7		
	Saliva-1		
	Saliva-2		
()	Saliva-3		
	Saliva-4		
	Saliva-5		
	Saliva-6		
	Saliva-7		
Saliva	Saliva-8 Saliva-9		
Saliva	Saliva-10		
	Saliva-11		
	Saliva-12		
	Saliva-13		
	Saliva-14		
	Saliva-15		
	Saliva-16		
	Saliva-17		4
	Vaginal-1		
	Vaginal-2		
1	Vaginal-3		
	Vaginal-4		
3,000	Vaginal-5		
Vaginal	Vaginal-6		
	Vagiinal-7		
	Vaginal-8 Vaginal-9		
	Vaginal-10		
	Vaginal-11		
	Menstrual-1		
	Menstrual-2		
	Menstrual-3		
Menstrual	Menstrual-4		
	Menstrual-5		8
	Menstrual-6		
	Skin-1		
	Skin-2		
	Skin-3		
	Skin-4 Skin-5		
100000	Skin-6		
Skin	Skin-7		-
1	Skin-8		
	Skin-8		
1	Skin-9		
	Skin-10		
	Skin-11		

Ion 520/530 Kit-Chef

Create a Planned Run within the Torrent Suite™ Software and set the run parameters.

•

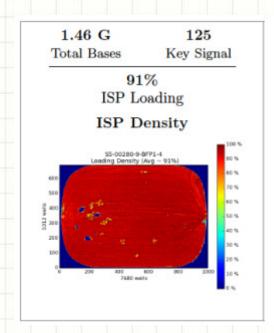
Dilute the library samples, and thaw the reagents.

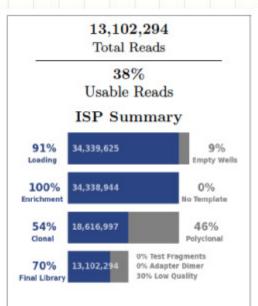
•

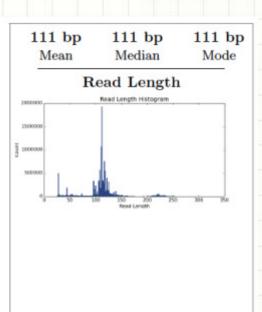
Load the Ion Chef[™] Instrument with sequencing chips, consumables, reagents, and libraries.

.

Start the Ion Chef™ Instrument

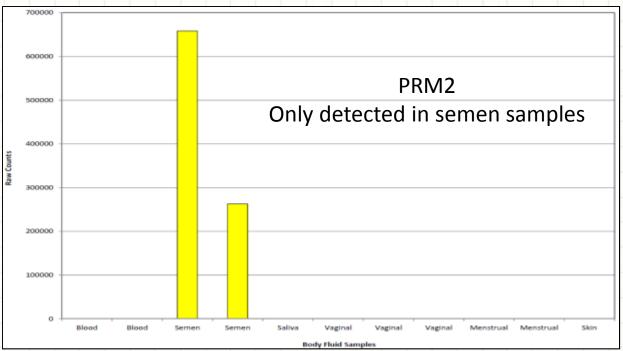

•

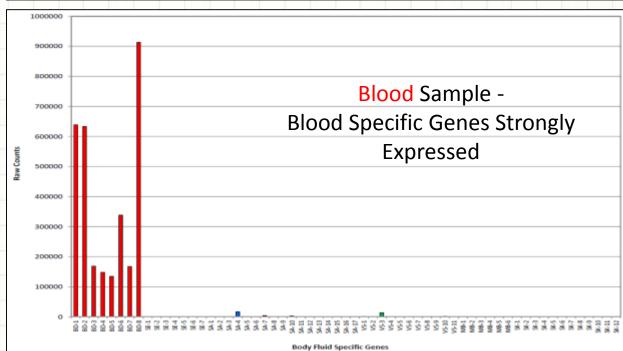

Unload the Ion Chef™ Instrument.

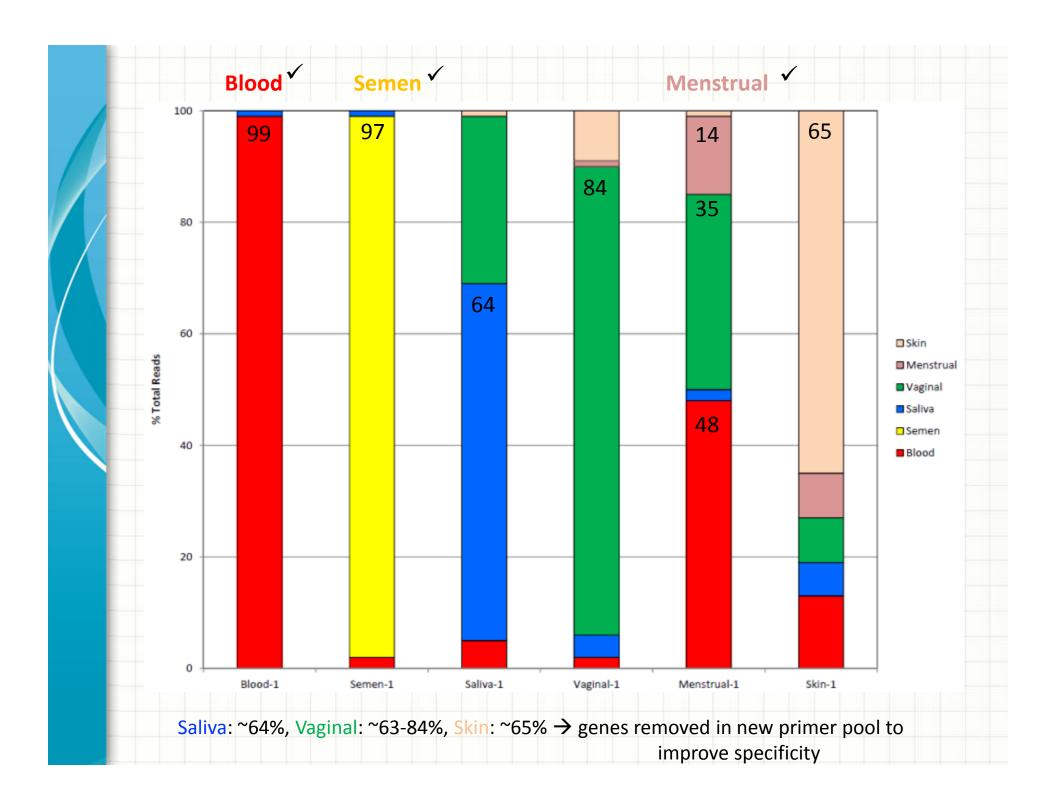

•

Load the prepared chip into the Ion S5[™] or Ion S5[™] XL Sequencer and begin the sequencing run.

Run Data – Ion Chef™ System- Ion S5™ System




Barcode Name	Sample	Bases	$\geq Q20$	Reads	Mean Read Length
No barcode	none	60,999,878	51,458,510	526,263	116 bp
$IonCode_0125$	b7477	190,686,921	173,885,771	1,652,575	115 bp
$IonCode_0126$	SE22	226,174,742	205,968,784	2,033,923	111 bp
IonCode_0127	se19	110,666,506	101,744,622	1,083,866	102 bp
$IonCode_0128$	sa60	9,642,507	8,941,508	306,716	31 bp
$IonCode_0129$	sa61	154,341	138,406	2,369	65 bp
$IonCode_0130$	vs4	329,417,165	295,697,836	2,732,934	121 bp
IonCode_0131	vs2	152,613,820	138,022,817	1,494,241	102 bp
IonCode_0132	mb2	377,486,810	342,462,596	3,267,700	116 bp


Specificity

By Gene

By Sample

- Autosomal NGS STR profiles concordant with CE methods easily obtained with few minutes hands-on effort using the automated Ion Chef ™ System/Ion S5 ™ System/Precision ID GlobalFiler ™ Mixture ID Panel/Converge™ Software/1 ng DNA from casework type samples
 - apart from 29 aSTRs, the genotypes of 42 aSNPs and 36 MH's also obtained
 - RMP from the aSNPs are typically 10⁻¹⁷ -10⁻²³
 - Increased variation at STR loci detected and can be used
 - 'Hetero-homozygotes'
 - Stutter peak distinguished from allele peak when indistinguishable by CE
- Modular RNA-based body Fluid ID system being developed to be compatible for the automated Ion Chef™ System and Ion S5 System shows early promise
- Next step: MIXTURES here we come!

Acknowledgements

Dr. Erin Hanson (Co-Chef)

 (who hates having herpicture taken)

- The amazing Thermo Fisher Scientific team!
 - Sheri, Rob, Joe, Matt, Shelly
 - Sharada, Jie, Ravi, Narsi & the SW team!
 - Nicolette, Tanya
- Body fluid
 - Cordula Haas, Sabrina Ingold (University of Zurich)
 - Funding: NIJ, EUROFORGEN

