Enrichment of differentially methylated regions with MethylMiner™ fractionation and deep sequencing with the SOLiD™ System

Introduction

DNA methylation is an important epigenetic modification involved in the remodeling of chromatin structure and, ultimately, the control of gene expression. Proper control of DNA methylation patterns is essential for normal embryonic development and tissue differentiation [1], X-chromosome inactivation [2], and gene imprinting [3]. Aberrant methylation has been linked to many diseases, including cancers [4]. The modified base 5-methylcytosine constitutes about 1% of all DNA bases in mammalian genomes. Although the presence of 5-hydroxymethylcytosine in brain [5] and cytosine methylation at non-CpGs, namely CpNpG in early embryogenesis, has been reported [6], mammalian DNA methylation is found almost exclusively in the symmetrical CpG dinucleotide. While DNA methylation in CpG-rich promoter regions correlates with transcriptional silencing, it is becoming clear that CpG methylation in regions of lower CpG density and distant to promoters can also correlate with gene expression [7,8]. Thus, it would be quite useful to effectively partition densely methylated regions from moderately methylated regions in order to better understand the physiological role of this DNA chemical modification.

To fully understand the role of DNA methylation in normal and disease states, it is important to first determine genomic methylation patterns. Methods of characterizing methylation are generally based upon one of three techniques: bisulfite conversion, digestion with methylation-sensitive restriction enzymes, and antibody- or 5-methylcytosine binding protein–based purification of methylated DNA [9]. Next generation sequencing platforms enable ultra–high-throughput sequencing, mapping, and counting of short DNA reads (tags) and, in combination with any of the above methylation profiling strategies, can be used for comprehensive, genome–wide mapping of methylation sites.
Methylated cytosines constitute a small percentage of all bases in mammalian genomes. In the human genome, for example, only about 1% of the bases are 5-methylcytosine. It is in many cases neither cost-effective nor necessary to sequence the entire genome with deep coverage in order to interrogate the genomic methylation patterns. Thus, sensitive, accurate, and versatile tools for the enrichment of methylated sequences from the genome are highly useful for genome-wide studies of methylation patterns.

Different methods for selective enrichment of methylated genomic DNA fragments are available. Those based upon antibodies are termed methylated DNA immunoprecipitation (MeDIP) [10]. Other methods use proteins that naturally recognize methylated cytosines in double-stranded DNA. In the case of the MethylMiner™ system, the capture medium is the methyl-CpG binding domain (MBD) of the human MBD2 protein coupled to superparamagnetic Dynabeads® M-280 Streptavidin via a biotin linker. This application note describes a genome-scale study on the patterns of DNA methylation in the MCF-7 breast cancer cell line, using enrichment with the MethylMiner™ system on the SOLiD™ sequencing system.

Methods
Comparison of methylated DNA enrichment using the MBD-based MethylMiner™ kit to MeDIP-based enrichment identifies numerous workflow advantages to using the MethylMiner™ system (Figure 1). First, with antibody-based enrichment, the fragmented DNA must be denatured and kept single-stranded during the binding step for efficient capture. Denaturation of the DNA is necessary because all of the validated antibodies have been selected to bind a fully accessible methylated cytosine (5°C) and cannot bind 5°C occurring naturally in double-stranded DNA. This constraint can reduce binding efficiency, as fragments can reanneal during the binding reaction. To compensate for this, antibody–DNA binding is often performed for several hours to overnight at 4°C. After washing the beads, the DNA can only be recovered after digestion with proteinase K, usually with heat, which necessitates further clean-up, such as by phenol/chloroform extraction followed by precipitation with ethanol.

In contrast, the MethylMiner™ system is fast, convenient, and more versatile. The DNA remains double-stranded during the binding step, which only takes 1 hr at room temperature (longer times at 4°C are also sufficient). After incubation, the MethylMiner™ beads are washed and the captured methylated DNA eluted. The eluted double-stranded DNA fragments are ready for adaptor ligation, required for next generation sequencing, a significant advantage over working with single-stranded fragments. The system uses Dynal® superparamagnetic beads, which provide high-quality and efficient capture kinetics as well as rapid and convenient magnet-based bead capture for washing and changing solutions. Batch elution is easily achieved by simply mixing the beads with a high-salt (2 M NaCl) buffer [11]. Furthermore, since the affinity of MBD2 for methylated DNA can be modulated by ionic strength, fractionation of the captured DNA based on its degree of methylation can be done with graded changes in ionic strength. Varying degrees of CpG methylation density can influence gene regulation. Therefore, the ability to fractionate the genome according to the degree of methylation is important for functional studies. Finally, only ethanol precipitation is needed to obtain concentrated and purified double-stranded methylated DNA that is ready for further analysis, such as by PCR methods or microarray or high-throughput sequencing (Figure 1).

Results
Human DNA from the breast cancer–derived cell line MCF-7 was used to map the methylation status of CpG sites on a genome scale. Briefly, 50 μg of genomic DNA was sheared using a Covaris™ S2 non-contact sonicator (SOLiD™ 3 fragment library protocol) to generate random short DNA fragments with a median size of ~150 bp (Figure 2A, 2B). Fragmented DNA was then subjected to methylated DNA enrichment according to the protocol supplied with the MethylMiner™ Methylated DNA Enrichment Kit (Cat. No. ME10025), and two methylated fractions (500 mM and 1 M NaCl eluates) were isolated [11]. Figure 2C shows the typical elution profile of DNA from the MethylMiner™ beads following serial salt elution and multiple washes. Greater than 90% of the captured DNA is sequentially eluted with 500 mM and 1 M NaCl. The eluted mass of DNA was 6.9% (3.47 μg) of the total mass loaded (50 μg). Subsequent elution at a very high NaCl concentration (3.5 M) followed by digestion with proteinase K shows that less than 10% of the captured DNA remains on the beads after elution with 1 M NaCl.

DNA fractions were then used to construct standard SOLiD™ fragment libraries according to the manufacturer’s instructions (SOLiD™ Fragment Library Construction Kit). Library DNA was size-selected either with E-Gel® SizeSelect™ 2% agarose gels or by gel purification from 2% agarose E-Gel® EX gels (Figure 2D). The MethylMiner™ SOLiD™ libraries were sequenced at 50-base read length in a 4-well deposition chamber on a SOLiD™ 3 System, and the sequenced tags were mapped to the human reference genome (hg18) using the SOLiD™ primary and secondary analysis software package. Each quarter-slide chamber yielded ~20 million uniquely mappable sequencing reads.

To confirm that MethylMiner™ fractionation was indeed partitioning DNA fragments based on methylation density, the
Figure 1. Comparison of MethylMiner™ and antibody-based MeDIP workflows.

Figure 2. SOLiD™ 3 fragment library preparation after enrichment and elution using the MethylMiner™ kit. (A) Agarose gel and (B) 2100 Bioanalyzer trace of sheared human genomic DNA subjected to MethylMiner™ enrichment. (C) Recovery of DNA at different stages of MethylMiner™ enrichment. W1–W4 are successive wash fractions. 0.5a–c are successive elutions with buffer containing 500 mM NaCl; likewise, 1.0a–c and 3.5a–c are successive elutions with buffer containing 1 M and 3.5 M NaCl, and PK refers to residual DNA recovered with a final proteinase K treatment. The inset shows the mass of DNA pooled from these iterations. (D) Gel of library DNA.
overall number of CpG dinucleotides within the fragments in each fractionation library was calculated after SOLID™ sequencing (Figure 3). There is a significantly higher density of CpG dinucleotides in the MethylMiner™-enriched fractions compared to the unbound fraction. In addition, the 1 M NaCl eluate has a higher density than the 500 mM NaCl eluate. Notably, 25% of the unenriched sequenced human genomic DNA fragments have no CpGs. In contrast, only 0.65% of the 500 mM NaCl-enriched sequences and 0.11% of the 1 M NaCl-enriched sequences contain no CpGs. Despite the fact that the exact methylation status of the CpG sites is not interrogated directly, our results suggest that fragments containing two or more methylated CpGs per 150 bp are captured by MethylMiner™ fractionation and are progressively enriched from 2- to 10-fold with increasing degrees of methyl-CpG content. Overall, our data demonstrate that MethylMiner™ treatment can fractionate DNA based on CpG density [12].

To validate the performance of MethylMiner™ fractionation, we labeled the MCF-7 DNA from enriched and unenriched fractions with Alexa Fluor® dyes (BioPrime® Total for FFPE Genomic Labeling System, Invitrogen) and hybridized them to both a human chr21/22 tiling array (Nimblegen) and a human CpG island/promoter-focused array (Agilent) in parallel with DNA enriched by traditional antibody-based MeDIP [10]. Summary results for high-intensity microarray probe hits are shown in Figure 4. There is overlap between the combined MethylMiner™ fractions (500 mM and 1 M NaCl) and MeDIP data sets. However, there are more than 2,400 unique strong hits from the combined MethylMiner™ fractions; in contrast, only 147 array hits are unique to the MeDIP sample. In total, there are more than five times as many hits overall and more than 16 times as many unique hits with MethylMiner™ fractionation as compared to MeDIP. Our results indicate that MethylMiner™ fractionation pulls down more sequences containing CpG-rich sites and sequences within promoters than does the antibody-based approach.

In addition to “global” data demonstrating successful enrichment with MethylMiner™ capture, detailed information on locations and CpG densities can also be directly visualized and inspected with SOLID™ reads. Figure 5 depicts the uniquely mappable SOLID™ sequencing read locations and densities on a single chromosome (chr 21). Sequencing read distributions are depicted for unenriched DNA, successive MethylMiner™ elution fractions (500 mM and 1 M NaCl), and full MethylMiner™ elution with 2 M NaCl; further, tiling microarray data for the 1 M NaCl fraction are shown.

For the MethylMiner™-enriched uniquely mapped reads, the read coverage without enrichment is superimposed on the enriched read coverage to illustrate the relative enrichment obtained for equivalent amounts of sequencing time and expense; each sequencing reaction comprised ~20 million uniquely mappable reads from one chamber of a 4-well slide. The annotated genes and CpG islands are also shown for refer-
Figure 5. MethylMiner™ enrichment and SOLiD™ sequencing across chromosome 21. Tracks illustrating sequencing reads from unenriched MCF-7 DNA, MethylMiner™-enriched 500 mM and 1 M NaCl elution fractions, and full MethylMiner™ enrichment with 2 M NaCl elution are shown. Sequencing read depth of coverage for the enriched fractions is shown in red relative to the more uniform low coverage obtained from unenriched DNA shown in blue. Positive features for the MethylMiner™ 1 M NaCl-enriched fraction on a tiling array are also shown. Locations of annotated genes and CpG islands are indicated. Zoomed-in views of 50 kb and 1 kb regions are discussed in the text.
ence. The unenriched track suggests that there has been amplification of chromosome 21 DNA in this venerable cancer cell line, and the enriched tracks indicate that the distal end of the long arm of the chromosome is densely methylated. This is not surprising since widespread methylation of large chromosomal segments has been seen in other cancer genome studies and since the vast majority of annotated genes lie within this region of chromosome 21 [13,14]. At this high level, good concordance can be seen between the data sets, and the profiles of the serially eluted 1 M NaCl fraction reads and the batch-eluted 2 M NaCl reads are remarkably similar, indicating good reproducibility of sequence capture and significant sequence overlap between these two different elution schemes. The greater depth of coverage seen in the 1 M NaCl fraction attests to the decomplexing power of fractionation. Methylated sequences that resist elution with 500 mM NaCl are better enriched in a subsequent 1 M NaCl elution fraction than in the more complex sample that is eluted as a whole with 2 M NaCl.

For a more detailed view, the analysis focused on a 50 kb region in chromosome 21 (middle of Figure 5), and at this level of resolution, a broad peak of enrichment that spans the neighboring genes PFKL and C21orf2 can be seen in the SOLiD™ data from the 1 M NaCl elution fraction. Closer inspection of the 1 kb region that encompasses one of the PFKL gene’s intronic CpG islands clearly demonstrates the enrichment in this fraction (lower portion of Figure 5). The average depth of coverage is less than 1 in both the unenriched and 500 mM NaCl elution fractions; in contrast, coverage depth ranges from 5 to 15 in the 1 M NaCl elution fraction. Bisulfite cloning and sequencing of this CpG island verified that its CpGs are 94% methylated (Figure 5, bottom row). Notably, this CpG island failed to be identified as methylated in our MeDIP-microarray experiments.

To further corroborate the MethylMiner™ SOLiD™ data with the methylation status of the genomic DNA, we focused on a 200 kb region harboring the ADAMTS1 and ADAMTS5 genes on chromosome 21. The differential enrichment between the MethylMiner™ fractions is evident at this localized view. Sequences spanning the body and the upstream promoter region of the ADAMTS1 gene are exclusively enriched in the 500 mM NaCl fraction. With respect to sequences covering the

Figure 6. Annotated view of a 200 kb region of chr 21. Tracks of SOLiD™ reads from unenriched and MethylMiner™-enriched 500 mM and 1 M NaCl fractions. For MethylMiner™-enriched sequences, the read distribution from an unenriched sequence data set of the same size has been subtracted to highlight regions of enrichment. Locations of annotated genes and CpG islands are also shown. Results of bisulfite sequencing of a small segment in the promoter CpG island of ADAMTS5 are also shown. Open circles: nonmethylated CpGs; filled circles: methylated CpGs.
CpG island in the promoter of the ADAMTS5 gene, however, there is preferential enrichment in the 1 M NaCl fraction (Figure 6). We further carried out bisulfite cloning and sequencing across a portion of the CpG island in the ADAMTS5 promoter to determine the exact methylation pattern, since this locus, like the PFKL CpG island shown in Figure 5, had also been identified in our microarray experiments as significantly enriched (>10-fold) with MethylMiner™ treatment but not captured by MeDIP. As shown in Figure 5, the bisulfite-sequenced region shows an intermediate degree (57%) of CpG methylation. In all other loci tested (5 regions that were similarly detected on microarrays with MethylMiner™ but missed with MeDIP), bisulfite sequencing has confirmed the presence of >80% CpG methylation (data not shown). These results further indicate that MethylMiner™ enrichment permits the isolation of fractions of genomic DNA that harbor differing degrees of methylation. This capacity to capture moderately methylated regions, and direct compatibility with SOLiD™ sequencing, are notable advantages over antibody-based methods.

Conclusions

When it comes to whole-genome methylation analysis, MethylMiner™ enrichment provides several significant advantages over traditional antibody-based enrichment. The DNA binding step is rapid, efficient, and more sensitive to low levels of CpG methylation with the biotinylated MBD protein in MethylMiner™ fractionation. In addition, the incorporation of Dynal® superparamagnetic beads facilitates high-quality and effective capture kinetics. Furthermore, with the MethylMiner™ method, genomic DNA can be fractionated according to its methylation density. Finally, the capacity to capture and release double-stranded DNA greatly expedites library construction for current generation high-throughput sequencing.

In addition, multiplexing capabilities with SOLiD™ sequencing will permit the bar coding of numerous samples to be sequenced simultaneously. Moreover, samples can be further divided into distinct fractions according to their methylation density with MethylMiner™ fractionation. All of these features are important and relevant where sensitive and accurate screening of large numbers of samples is necessary, such as in clinical research and analysis. In summary, MethylMiner™ fractionation combined with SOLiD™ sequencing is a seamless, easy workflow that provides robust enrichment and deep coverage across focal areas for cost-effective sequencing of methylated sequences.

Ordering information

<table>
<thead>
<tr>
<th>Product</th>
<th>Quantity</th>
<th>Cat. No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MethylMiner™ Methylated DNA Enrichment Kit</td>
<td>1 kit</td>
<td>ME10025</td>
</tr>
</tbody>
</table>
References