Search
Search

Studying the brain and neuro-functions requires the knowledge of a vast selection of experimental methods, from cell preparation to image acquisition and analysis. Thermo Scientific Amira Software supports you in the most frequently used image analysis techniques, such as filament tracing and editing, DTI analysis, brain perfusion analysis, and object tracking. Combining Amira Software's versatility with state-of-the-art 3D visualization and image processing enables you to create custom workflows that extract exactly the desired type of information from an image.
Explore industry-leading insights and research that can support your lab workflow. Amira Software can empower your lab with a cutting-edge, comprehensive imaging data analysis toolbox.
Helping scientists answer questions that enable breakthrough discoveries in life sciences, materials science, and industry.
![]() | Correlative Microscopy: Using Amira Software to Understand the Spread of Cancer Read more |
![]() | Amira Software Accelerates Veterinary Research with 3D Visualization and Analysis Read more |
![]() | Molecular Clarity—Discovering What’s Possible with Cryo-Electron Tomography Read more |
![]() | Cryo-Electron Tomography and 3D Software Advances Coronavirus Research Read more |

Understanding the interconnectivity of the brain is essential for functional brain research. This allows researchers to better understand how different parts of the brain jointly orchestrate higher cognitive functions and motor skills.
With Amira Software, you are able to perform the entire DTI analysis workflow by first converting images into Talairach coordinates. You are then able to map multiple brain images onto a reference brain. Once the brain images are aligned, gradient images can be converted into a tensor field, and nerve fiber bundles can be tracked and visualized with our state-of-the-art visualization tools.

With Amira Software, you are able to trace, analyze, and quantify 3D images of filamentous structures such as neurons and blood vessels. Filamentous networks can be reconstructed, and measures such as length, thickness, orientation, ranks, etc., can be computed and visualized in compelling 3D renderings. Tracing can be performed automatically or interactively, depending on the application and needs.
Our template-matching algorithm allows automatic detection and tracing of fine filaments in noisy cryo-EM data. Amira Software also enables you to edit the resulting graphs to remove image features erroneously identified as a filament or to add missing parts of a network.

Brain perfusion studies help researchers and scientist to understand the impact of strokes or other brain tissue diseases such as Alzheimer and dementia. The exact location and duration of a stroke can determine functional impact of the event.
With Amira Software, you are able to analyze brain perfusion in perfusion-weighted MRI and CT images. This analysis includes computation of mean transit time (MTT), cerebral blood flow (CBF), and cerebral blood volume (CBV).

In vitro neuroscience research has grown considerably in neurodegenerative, neurogenesis, and neurotoxicology applications. Neurite outgrowth and synaptogenesis are the gold standards for evaluating health and functionality of neurons. However, even in vitro, identification of neuronal outgrowth morphology is difficult.
Researchers manually tracing neurites and synaptogenic spots face variability and non-scalability. Amira Software’s three-dimensional neuroscience abilities can accurately and efficiently quantify neuronal morphology in 3D models to facilitate the high-throughput demands of this research.

Understanding the interconnectivity of the brain is essential for functional brain research. This allows researchers to better understand how different parts of the brain jointly orchestrate higher cognitive functions and motor skills.
With Amira Software, you are able to perform the entire DTI analysis workflow by first converting images into Talairach coordinates. You are then able to map multiple brain images onto a reference brain. Once the brain images are aligned, gradient images can be converted into a tensor field, and nerve fiber bundles can be tracked and visualized with our state-of-the-art visualization tools.

With Amira Software, you are able to trace, analyze, and quantify 3D images of filamentous structures such as neurons and blood vessels. Filamentous networks can be reconstructed, and measures such as length, thickness, orientation, ranks, etc., can be computed and visualized in compelling 3D renderings. Tracing can be performed automatically or interactively, depending on the application and needs.
Our template-matching algorithm allows automatic detection and tracing of fine filaments in noisy cryo-EM data. Amira Software also enables you to edit the resulting graphs to remove image features erroneously identified as a filament or to add missing parts of a network.

Brain perfusion studies help researchers and scientist to understand the impact of strokes or other brain tissue diseases such as Alzheimer and dementia. The exact location and duration of a stroke can determine functional impact of the event.
With Amira Software, you are able to analyze brain perfusion in perfusion-weighted MRI and CT images. This analysis includes computation of mean transit time (MTT), cerebral blood flow (CBF), and cerebral blood volume (CBV).

In vitro neuroscience research has grown considerably in neurodegenerative, neurogenesis, and neurotoxicology applications. Neurite outgrowth and synaptogenesis are the gold standards for evaluating health and functionality of neurons. However, even in vitro, identification of neuronal outgrowth morphology is difficult.
Researchers manually tracing neurites and synaptogenic spots face variability and non-scalability. Amira Software’s three-dimensional neuroscience abilities can accurately and efficiently quantify neuronal morphology in 3D models to facilitate the high-throughput demands of this research.
Shorten your learning curve and maximize your investment with this introductory training specifically designed for new users of Amira, Avizo and PerGeos Software.
The course consists of a lecture with hands-on sessions. The training material highlights the basic features and functionalities of Amira, Avizo and PerGeos Software.
Maximize your investment and reduce your time-to-results with this advanced training specifically designed for existing users of Amira, Avizo and PerGeos Software.
The course consists of a lecture with hands-on sessions. The training material highlights advanced features and functionalities of Amira, Avizo and PerGeos Software.
With over 25 years of experience in 3D and image processing and hundreds of custom projects delivered to organizations small and large, Thermo Fisher Scientific can provide you with a solution tailored to fit your specific needs.
We can customize and expand our software solutions at various levels.
Visualization of the results of a Diffusion Tensor Imaging study of the human head Courtesy of Prof. Dr. Alexander Brawanski, University Hospital of Regensburg1001.
Visualization of a brain of Mus musculus.
Fertilizers effects on neuronal outgrowth and synapse expression by IUF – Leibniz Research Institute for Environmental Medicine.
Visualization of the results of a Diffusion Tensor Imaging study of the human head Courtesy of Prof. Dr. Alexander Brawanski, University Hospital of Regensburg1001.
Visualization of a brain of Mus musculus.
Fertilizers effects on neuronal outgrowth and synapse expression by IUF – Leibniz Research Institute for Environmental Medicine.
- Bio-Formats
- Bitmap formats
- Microscopy: electron and optical
- Medical and neuroimage formats
- Molecular formats
- Other acquisition devices (MRI, radiography, etc.)
For Research Use Only. Not for use in diagnostic procedures.











