GUIDELINES

Consensus-based European guidelines for treatment of atopic eczema (atopic dermatitis) in adults and children: part II

A. Wollenberg,1,2,* S. Barbarot,3 T. Bieber,4 S. Christen-Zaech,5 M. Deleuran,6 A. Fink-Wagner,7 U. Gieler,8,9 G. Girolomoni,10 S. Lau,11 A. Muraro,12 M. Czarnecka-Operacz,13 T. Schafer,14 P. Schmid-Grendelmeier,15,16 D. Simon,17 Z. Szalai,18 J.C. Szepeitowski,19 A. Taieb,20 A. Torrelo,21 T. Werfel,22 J. Ring,16,23 For the European Dermatology Forum (EDF), the European Academy of Dermatology and Venereology (EADV), the European Academy of Allergy and Clinical Immunology (EAACI), the European Task Force on Atopic Dermatitis (ETFAD), European Federation of Allergy and Airways Diseases Patients’ Associations (EFA), the European Society for Dermatology and Psychiatry (ESDAP), the European Society of Pediatric Dermatology (ESPN), Global Allergy and Asthma European Network (GA2LEN) and the European Union of Medical Specialists (UEMS)

1Department Dermatology and Allergy, Ludwig-Maximilian University, Munich, Germany
2Klinik Thalkirchner Straße, Munich, Germany
3Department of Dermatology, Centre Hospitalier Universitaire CHU Nantes, Nantes, France
4Department of Dermatology and Allergy, Christine Kühne-Center for Allergy Research and Education, University Bonn, Bonn, Germany
5Pediatric Dermatology Unit, Departments of Dermatology and Pediatrics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
6Department Dermatology, Aarhus University Hospital, Aarhus, Denmark
7European Federation of Allergy and Airways Diseases Patients’ Associations (EFA), Global Allergy and Asthma Patient Platform (GAAPP), Konstanz, Germany
8Department of Dermatology, University of Gießen and Marburg GmbH, Gießen, Germany
9Department of Psychosomatics and Psychotherapy, University of Gießen and Marburg GmbH, Gießen, Germany
10Department of Medicine, Section of Dermatology, University of Verona, Verona, Italy
11Pediatric Pneumology and Immunology, Universitätsmedizin Berlin, Berlin, Germany
12Centro di Specializzazione Regionale per lo Studio e la Cura delle Allergie e delle Intolleranze Alimentari presso l’Azienda Ospedaliera, Università di Padova, Padova, Italy
13Department of Dermatology, Medical University, Poznan, Poland
14Dermatological Practice, Immenstadt, Germany
15Allergy Unit, Department of Dermatology, University of Zurich, Zurich, Switzerland
16Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
17Department Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
18Department of Dermatology, Heim Pál Children’s Hospital, Budapest, Hungary
19Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland
20Department of Dermatology & Pediatric Dermatology, Hôpital St André, Bordeaux, France
21Department of Dermatology, Hospital Niño Jesus, Madrid, Spain
22Department Dermatology and Allergy, Hannover Medical School, Hannover, Germany
23Department Dermatology and Allergy Biederstein, Technische Universität München, Munich, Germany
*Correspondence: A. Wollenberg. E-mail: wollenberg@lrz.uni-muenchen.de

Abstract

This guideline was developed as a joint interdisciplinary European project, including physicians from all relevant disciplines as well as patients. It is a consensus-based guideline, taking available evidence from other guidelines, systematic reviews and published studies into account. This second part of the guideline covers antimicrobial therapy, systemic treatment, allergen-specific immunotherapy, complementary medicine, psychosomatic counselling and educational interventions, whereas the first part covers methods, patient perspective, general measures and avoidance strategies, basic emollient treatment and bathing, dietary intervention, topical anti-inflammatory therapy, phototherapy and antipruritic therapy. Management of AE must consider the individual clinical variability of the disease. Systemic immunosuppressive treatment with cyclosporine, methotrexate, azathioprine and mycophenolic acid is established option for severe refractory cases, and widely available. Biologicals targeting the T helper 2 pathway such as dupilumab may be a safe and effective, disease-modifying alternative
when available. Oral drugs such as JAK inhibitors and histamine 4 receptor antagonists are in development. Microbial colonization and superinfection may cause disease exacerbation and can require additional antimicrobial treatment. Allergen-specific immunotherapy with aeroallergens may be considered in selected cases. Psychosomatic counselling is recommended especially in stress-induced exacerbations. Therapeutic patient education (‘Eczema school’) is recommended for children and adult patients. General measures, basic emollient treatment, bathing, dietary intervention, topical anti-inflammatory therapy, phototherapy and antipruritic therapy have been addressed in the first part of the guideline.

Received: 24 January 2018; Accepted: 29 January 2018

Conflicts of interest
A. Wollenberg has been an advisor, speaker or investigator for ALK-Abelló, Almirall, Anacor, Astellas, Beiersdorf, Bencard, Biederma, Chugai, Galderma, Glaxo SmithKline, Hans Karrer, LEO Pharma, L’Oréal, Meda, Medimmune, Novartis, Pfizer, Pierre Fabre, Regeneron and Sanofi. S. Barbarot has been an advisor, speaker or investigator for Biederma, La Roche-Posay, Sanofi-Genzyme, Novalac, Ferring, Abbvie, Novartis, Janssen. T. Bieber has been an advisor, speaker or investigator for Abbvie, Almirall, Anacor, Astellas, Bayer, Celgene, Chugai, Daiichi-Sankyo, Galderma, Glaxo SmithKline, Leo Pharma, Novartis, Pfizer, Pfizer, Pierre Fabre, L’Oréal, La Roche-Posay, Regeneron and Sanofi. S. Christen-Zaech has been an advisor, speaker or investigator for Galderma, L’Oréal, La Roche-Posay, Pierre Fabre, Permaned, Procter and Gamble and Sanofi-Genzyme. M. Deleuran has been an advisor, speaker or investigator for AbbVie, Leo Pharma, MEDA, Pierre Fabre, L’Oréal, La Roche-Posay, Pfizer, Regeneron and Sanofi. A. Fink-Wagner has been working with, or an advisor or speaker for ALTANA, Novartis, Nycomed, Hoffmann-La Roche and Teva. U. Gieler has been an advisor or speaker for Almirall, Astellas, Bayer, Celgene, Galderma, Glaxo SmithKline, Leo Pharma, Lilly, Novartis, Pfizer, Pierre Fabre, La Roche-Posay and Sanofi -Aventis. G. Girolomoni has been an advisor, speaker or investigator for AbbVie, Abiogen, Almirall, Amgen, Bayer, Biogen, Boehringer Ingelheim, Celgene, Eli Lilly, Galderma, Hospira, Janssen, Leo Pharma, Menlo therapeutics, Merck, MSD, Mundipharma, Novartis, Otsuka, Pfizer, Pierre Fabre, Regeneron, Sandoz, Sanofi and Sun Pharma. S. Lau has received grants from Allergopharma and Symibipharm, and a honorarium from Merck as member of a drug monitoring committee, ALK and DBV Technologies. A. Muraro has been a speaker for Meda, Nestlé and Stallergenes. M. Czannecka-Operacz has been an advisor, speaker or investigator for Allergopharma, Almirall, Biederma, Berlin Chemie, Menarini, Novartis, Pierre Fabre, Galderma, Janssen and Leo Pharma. T. Schäfer has been speaker for Abbott, Bencard, Dr Pfleger, Novartis and Syneron-Candela. P. Schmid-Grendelmeier has been an advisor or speaker for ALK-Abello, Allergopharma, La Roche-Posay, MEDA, Novartis, Sanofi and Stallergenes. D. Simon has been an advisor, speaker or investigator for Roche, Novartis, Galderma, Glaxo SmithKline, Merz Pharma (Schweiz), Almirall, Sanofi, and Eli Lilly. Z. Szalai has been an advisor for Pfizer, speaker or investigator for Bayer, Novartis, Pierre Fabre, Sanofi, Leo. J.C. Szepietowski has been a Consultant and Advisor for AbbVie, Celgene, Dignity Sciences, Leo Pharma, Novartis, Pierre Fabre and Sandoz; Investigator for AbbVie, Actelion, Amgen, GSK, Janssen, Merck, Novartis, Regeneron, Takeda, Trevi; Speaker for AbbVie, Actavis, Astellas, Janssen, Leo Pharma, Novartis, SunFarm, Sandoz, Eli Lilly. A. Taib has been an advisor for Anacor, Biederma, Chugai, Galderma, Roche and Pierre Fabre. A. Torrelo has been advisor, speaker or investigator for AbbVie, Anacor, Astellas, Bayer, Beiersdorf AG, Galderma, Meda, Novartis, Pierre Fabre. T. Werfel has received support for research projects from AbbVie, Astellas, Janssen/JNJ, Meda, Regeneron/Sanofi, Takeda, Ziarco and has been an advisor for AbbVie, Almirall, LEO Pharma, Lilly, MSD, Novartis, Regeneron/Sanofi, Roche, Stallergenes and Ziarco. J. Ring has been advisor, speaker or investigator for ALLERGIKA, ALK-Abello, Almirall-Hermal, Anacor, Astellas, Bencard/Allergy Therapeutics, Galderma, GSK-Stiefel, LEO Pharma, Meda, MSD, Novartis, Phadia-ThermoFisher and Sanofi.

Funding source
None.

Abbreviations
AAD: American Academy of Dermatology
AD: atopic dermatitis
AE: atopic eczema
AAP: American Academy of Pediatrics
ACPR: Australian and New Zealand Society for Clinical Immunology and Allergy
ACRS: American Contact Dermatitis Society
AEGIS: 3-trimethylsilylpropyl-dimethyloctadecyl ammonium chloride
AGREE: appraisal of guidelines research and evaluation
AH: antihistamines
APT: atopy patch test

JEADV 2018, 32, 850–878 © 2018 European Academy of Dermatology and Venereology
For a detailed description of the methods used in this guideline (See also Tables 1-3), refer to part I of the guideline.

Antimicrobial therapy

In patients with AE, the inflammatory micro-milieu initiated by TSLP, IL-4 and IL-13 may downregulate the cutaneous antimicrobial peptides such as cathelicidin LL-37, dermcidin, human...
β-defensins HBD-1, HBD-2 and HBD-3. This is one of the reasons why these patients are more susceptible to secondary skin infections, which tend to generalize. The understanding of colonization and infection in AE has largely increased by structured investigation of the human microbiome in the context of AE. Flares of AE are significantly associated with a *Staphylococcus aureus*-caused loss of diversity in the cutaneous microbiome, which is not significant if patients have followed a proactive therapy regimen before the flare.

Antibacterial

In up to 90% of AE patients, even the normal looking skin is extensively colonized by *S. aureus*. This bacterium is a major trigger of AE, as it leads to inflammation through the release of superantigen toxins, which enhance T-cell activation of superantigen-specific and allergen-specific T cells, expression of IgE antistaphylococcal antibodies and as it increases expression of IL-31 which leads to pruritus. Scratching favours binding of *S. aureus* to the skin, and the increased amount of *S. aureus*-derived ceramidase aggravates the skin barrier defect. Moreover, superantigen production increases expression of alternative glucocorticoid receptors that do not bind to topical corticosteroids, which leads to resistance. Biofilm formation by AE-associated staphylococci most certainly also plays a major role in the occlusion of sweat ducts and leads to inflammation and pruritus. Recent investigations have shown that besides *S. aureus* the dysbalance of skin microbiome may play an important role in AE pathophysiology. New developments in emollients are the incorporation of active compounds that repair the barrier function or influence the microbiome of AE with bacterial lysates from *Aquaphilus dolomiae* or *Vitreoscilla filiformis* species. A better understanding of the skin microbiome in AE is a promising direction for the development of new treatment strategies.

A systematic review of 26 studies including 1229 participants showed no clear beneficial effect of antiseptic bath additives or soaps, or of antimicrobial agents added to topical therapies in non-infected atopic dermatitis. Nevertheless, if there is no response to topical glucocorticosteroids or calcineurin inhibitors, or evident infection, the use of topical antiseptics can be considered, and these are preferred over topical antibiotics with regard to the development of bacterial resistance. Sodium hypochlorite 0.005% is not only antiseptic but enhances epidermal thickness and proliferation. Its intermittent use showed a significant decrease in AE severity. Systemic antibiotics should only be used in case of apparent and extensive bacterial superinfection. On the basis of current resistance spectra, cephalaxin, or another first-generation cephalosporin can be recommended. Children with AE seem to have a much lower rate of community-acquired methicillin resistant *S. aureus* infection compared to the general paediatric population. In any case, treatment with emollient and corticosteroids or topical calcineurin inhibitors should be continued.

Underestimated sources of bacteria are cream and ointment containers, of which up to 53% are contaminated, up to 25% with *S. aureus*. Thus, the following recommendations seem to be useful: (i) keep open moisturizers in refrigerator; (ii) use pumps or pour bottles rather than jars; (iii) avoid direct contact with hands and decant; (iv) avoid sharing personal hygiene items.

Antimicrobial textiles Silver-impregnated textiles have shown significant antimicrobial activity, as well as improvement of localized SCORAD in an unblinded, side-to-side controlled clinical trial. In patients with uninfected AE, the use of silver-impregnated textile compared to cotton underwear did not reduce AE severity. However, some functional textiles (silver-coated, acid-coated and silk textiles) as well as chitosan, a natural biopolymer with immunomodulatory and antimicrobial properties, may possibly improve AE manifestations, as they decrease skin colonization by *S. aureus*, and they reduce itch. Some of these newer options are still under investigation and there seems to be some concern about the safety of silver-coated textiles in infants and toddlers. AEGIS-coated silk textiles did not show clinical benefit in a well-controlled, multicenter clinical trial.

Antiviral

Viral infections including herpes simplex, varicella zoster, molluscum contagiosum, smallpox and Coxsackie viruses occur more frequently in AE patients than in healthy individuals, with a tendency to disseminated, widespread disease. Eczema herpeticum (EH), a disseminated herpes simplex virus infection, is a potentially serious complication of AE that requires immediate medical action. Patients, mostly children, present with disseminated vesicles, fever and lymphadenopathy and can develop complications such as keratoconjunctivitis, meningitis and encephalitis. Predisposing factors of EH are early onset of AE, severe or untreated forms of AE, filaggrin deficiency and high total serum IgE level. Pretreatment with topical corticosteroids does not seem to imply an increased risk of developing EH, whereas topical calcineurin inhibitor may do so and should be discontinued immediately. Mainstay of EH therapy is a systemic treatment with aciclovir or valaciclovir, in a majority of cases administrated intravenously. Treatment should be started immediately once the clinical diagnosis is made.

Varicella-zoster virus (VZV) infection in an immunocompetent child is usually a mild, self-limited disease. This infection is, however, known to facilitate secondary local or systemic bacterial infection, which is cause for particular concern in AE children. Earlier studies demonstrated the safety and efficacy of VZV vaccination in these children who appear to benefit from this vaccination. Moreover, in children with AE, common childhood immunization in the first year is not associated with an increased risk of more severe AE or allergic sensitization; also immune response to VZV vaccine is comparable to healthy children. Therefore, parents of atopic children should be encouraged to fully immunize their children.
Molluscum contagiosum virus (MCV) infection is in general benign and self-limited, but in patients with AE dissemination is frequent and therefore treatment is recommended. A large variety of topical treatments have been reported such as cantharidin, potassium hydroxide, tretinoin cream, topical cidofovir and others. Physical therapies including cryotherapy and curettage are also effective, but not always well tolerated in paediatric patients. Topical treatment of AE with TCS may be continued during MCV infection.

Eczema vaccinatum (EV) is a complication of smallpox vaccination known to occur in AE patients. The vaccinia virus disseminates and causes an extensive rash and severe systemic illness with a mortality rate estimate at 5–40%. Therefore, smallpox vaccination is contraindicated in patients with a history of or currently active AE. The existence of an attenuated vaccine and three antiviral drugs, in addition to vaccinia immunoglobulin, provides means of preventing or treating EV. Should a smallpox outbreak necessitate an emergency mass vaccination, the choice of vaccination strategies, such as ring or mass vaccination, has to be determined by policymakers.

Eczema coxsackium (EC) is a disseminated form of Coxsackie virus infection mostly occurring in children with active AE lesions. The Coxsackie virus A6 strain leads to atypical disease manifestations, which are classified as diffuse form (lesions extended to the trunk), acral form (lesions with a mainly acral distribution) or eczema coxsackium (disseminated lesions on pre-existing eczematous areas). Symptomatic treatment includes use of topical steroids and wet wrap therapy.

Regional vaccination programmes should be followed by all AE patients as recommended. The denial of vaccination because of diagnosed AE is a misconception possibly leading to fatal consequences (see chapter: general measures).

Antifungal

Despite its role as a commensal on healthy human skin, Malassezia spp. is attributed a pathogenic role in AE, as it may interact with the local skin immune response and barrier function. The precise mechanisms by which Malassezia spp. may contribute to the pathogenesis of AE are not fully understood and remain to be elucidated. Several randomized, placebo-controlled trials investigated the benefit of topical or systemic antifungal treatment for AE patients. The ambiguous results of these clinical trials might be attributed to a selection bias. It can be speculated that antifungal therapies are more effective in certain subgroups of AE. It seems, for example, that antifungal therapy shows beneficial effects in patients with a head–neck-type distributed AE and detectable IgE-mediated sensitization against Malassezia. It has also been shown that sensitization against this skin-colonizing yeast can correlate with disease activity. The most common class of antifungal drugs prescribed for AE patients are azoles such as ketoconazole and itraconazole which have also some anti-inflammatory properties. Due to a better benefit side-effect ratio, imidazole derivates (fluconazole or itraconazole) should be prescribed instead of ketoconazole for systemic treatment. In summary, antifungal treatment with either topical ketoconazole or ciclopirox olamine or systemic itraconazole or fluconazole can be considered for those patients who suffer from head–neck dermatitis, particularly for those who are characterized by clear IgE sensitization to Malassezia spp.

Summary of evidence

Oral antibiotics have no benefit on the skin condition in AE as long as skin lesions are not obviously superinfected. A Cochrane review showed no clear beneficial evidence to antiseptic substances in non-infected AE. Topical glucocorticosteroids and calcineurin inhibitors reduce the colonization rate of Staphylococcus aureus in AE.

Antiseptic textiles have a moderate clinical effect on AE. AEGIS-coated silk garments do not show clinical benefit over standard care. VZV vaccination is safe, efficacious and beneficial for children with atopic dermatitis.

An antifungal therapy may be efficient in some AE patients, mainly in those suffering from the ‘head and neck’ variant of AE or with demonstrated IgE sensitization to Malassezia spp.

Recommendations

- A short course of systemic antibiotics, such as cephalexin, may be considered in AE patients clinically infected with S. aureus.
- The long-term application of topical antibiotics is not recommended due to the risk of increasing resistances and sensitizations.
- Treatment with topical antiseptic drugs – including antiseptic baths e.g. with diluted sodium hypochlorite – should be considered, if clinical signs of bacterial super-infection are present.
- Treatment with topical antiseptic drugs – including sodium hypochlorite 0.005% baths – may be considered in patients with treatment-resistant, chronic course of AE.
- Eczema herpeticum should be treated without delay using systemic antiviral therapy, such as systemic aciclovir.
- VZV vaccination is recommended for children with atopic dermatitis.
- Topical or systemic antifungal therapy may be effective in some AE patients, mainly in those suffering from the ‘head and neck’ variant of AE or with demonstrated IgE sensitization to Malassezia spp.
Systemic anti-inflammatory treatment

Immunosuppressive treatment

Oral glucocorticosteroids
Oral glucocorticosteroids are used in many European countries for treatment of AE. Well-known side-effects limit their use especially for long-term treatment (see Table 4). Funding of expensive clinical trials in the near future is unlikely.

Controlled clinical trial data demonstrating efficacy. There is one controlled trial available that demonstrates lower efficacy of therapy with systemic prednisolone compared to cyclosporine in severe adult AE patients. Broad experience from clinical use by many experts indicates some efficacy, as well as prompt rebound after withdrawal.

Summary of evidence

Short-term treatment with oral glucocorticosteroids is moderately effective. (1b)
Systemic steroids have a largely unfavourable risk/benefit ratio for treatment of AE. (1b)

Recommendations

- Short-term (up to 1 week) treatment with oral glucocorticosteroids may be an option to treat an acute flare in exceptional cases of AE. Restrictive use, largely limited to adult patients with severe AE, is recommended. (−, D)
- The daily dose should be adjusted to and not exceed 0.5 mg/kg bodyweight. (−, D)
- Long-term use of oral glucocorticosteroids in AE patients is not recommended. The indication for oral steroids in children should be handled even more cautiously than in adults. (−, D)

Cyclosporine A
Cyclosporine is licensed in many European countries for treatment of AE and is therefore considered to be the first-line option for patients with severe disease who require systemic immunosuppressive treatment (see Figure 1).

Controlled clinical trial data demonstrating efficacy
Cyclosporine vs. placebo. A meta-analysis and review of pooled data from 15 RCTs clearly demonstrated the efficacy of cyclosporine in AE with a 55% improvement on average after 6–8 weeks of treatment. Body surface area, erythema, sleep loss and glucocorticosteroid use were reduced in the cyclosporine group. Cyclosporine is more effective than placebo, but there is often prompt relapse if cyclosporine is stopped. All scores are back to pretreatment values 8 weeks after the end of cyclosporine therapy in most patients.

Cyclosporine dose finding study for AE treatment in adult patients. A fixed-dosage cyclosporine regimen was evaluated in 106 adults with severe AE. Initial treatment was performed with 300 mg/day or 150 mg/day and reduced after 2 weeks to 50% of the initial daily dose until a final evaluation was performed after 8 weeks. Clinical efficacy was detectable after 2 weeks in both treatment groups, but the higher dose was significantly more effective (P < 0.05). The authors recommended to start therapy with 150 mg/day, because this regimen showed a lower incidence of serum creatinine increase. It is recommended today to start with a higher dose of 4–5 mg/kg/day to obtain a good initial result unless the patient is old or suffers from relevant concomitant diseases. Some patients may tolerate low-dose cyclosporine therapy for a longer time than the usually recommended therapy length of 2 years.

Continuous or intermittent cyclosporine therapy study of AE in children. Forty children aged 2–16 years were randomized to either a continuous long-term or an intermittent short-term cyclosporine regimen. Both groups showed significantly better results in clinical scores and quality of life assessments. Enhanced sustained improvement was seen in the continuously treated group. As the intermittent therapy was sufficient in some patients but associated with a lower cumulative cyclosporine dose, the authors recommended choosing the regimen on an individual basis.

Cyclosporine or UV therapy for AE. Cyclosporine was tested against a combined UV/UVB regimen in a 1 year, open-label, multicentre trial involving 72 patients. Cyclosporine therapy induced a significantly higher number of days in remission, as compared to UV therapy.

Compounding of cyclosporine. Micro-emulsions of cyclosporine show an earlier onset and higher peak value of efficacy compared to traditional formulations. The clinical efficacy evaluated after 8 weeks of therapy was, however, identical for both formulations.

Drug safety profile of cyclosporine. Patients receiving cyclosporine should be monitored for blood pressure and renal parameters, as cyclosporine is known to induce structural and organic kidney damage. Nephrotoxic effects are more likely to occur if the daily dose exceeds 5 mg/kg bodyweight, serum creatinine values are elevated or elderly patients are treated. Life vaccination is contraindicated during cyclosporine therapy.

Summary of evidence

Many RCTs indicate the efficacy of cyclosporine vs. placebo in AE. (1a)
Cyclosporine is also effective in children and adolescent AE patients. (1a)
Self-willed reduction in the recommended cyclosporine dose may reduce the clinical efficacy of cyclosporine and is not recommended. (2b)
A micro-emulsion of cyclosporine has the advantage of an earlier onset and peak level of clinical efficacy, which may be useful in short-term treatment. (1b)

Long-term intermittent cyclosporine therapy for 1 year is more effective than an intermittent UVA/UVB therapy following a 2–3 times weekly regimen. (1b)

Recommendations
- Cyclosporine may be used in chronic, severe cases of AE in adults. Treatment should not exceed a 2-year continuous regimen. Careful monitoring for potential severe side-effects must be performed. (1a, A)
- Cyclosporine may be used (off label) in children and adolescent patients showing a refractory or severe course of disease. A detailed patient monitoring, especially of the renal status, is advisable. (2b, B)
- The duration of cyclosporine therapy is guided by clinical efficacy and tolerance of the drug. Both short-term and long-term therapies may be useful in AE. (2b, D)
- Common side-effects of cyclosporine (e.g. nephrotoxicity, hypertension) argue against a long-term treatment of AE with cyclosporine. Therefore, an interval of 3–6 months is usually recommended. (2b, D)
- Cessation of therapy or switch to another systemic drug should be attempted after 2 years of therapy, although many patients tolerate much longer therapy with low-dose cyclosporine. (2b, D)
- An initial daily dose of 5 mg/kg/day, divided upon two single doses, is recommended. A dose reduction of 0.5–1.0 mg/kg/day every 2 weeks is recommended, once clinical efficacy is reached. (2b, D)
- Dose reduction should be considered according to clinical efficacy. Long-term treatment prescribing the lowest clinically useful dose may be advisable in selected cases. (2b, D)
- Since an intermittent-dosage regimen (e.g. ‘weekend therapy’) will lead to lower cumulative doses of cyclosporine and is effective in some AE patients, an individualized dosage regimen is recommended for underage patients. (2b, D)
- Cyclosporine trough levels do not need to be assessed routinely during therapy. (2b, D)
- Although there are no controlled studies available regarding the efficacy of vaccination during cyclosporine therapy, there is no evidence for a failure during cyclosporine either. Hence, a cessation of therapy of 2 weeks before and 4–6 weeks after vaccination may be advisable. Clinically, there is no evidence for this recommendation. (2b, D)
- A combination therapy of cyclosporine with UV therapy is not recommended, and effective UV protection should be used. (2b, D)

Azathioprine (AZA)
Azathioprine is used (off label) for many years for treatment of AE in adult patients. Funding of expensive clinical trials in the near future is unlikely.

Controlled clinical trial data demonstrating efficacy Efficacy of AZA was tested in a randomized, controlled, 6-month, crossover clinical trial involving 37 patients aged 17–73 years.49 The drop-out rate was high (12 patients on AZA, 4 patients on placebo). AZA (2.5 mg/kg/day) or placebo was given for 3 months each in a crossover design. The SASSAD skin severity score was reduced by 26% in the AZA group and 3% in the placebo group \((P < 0.01)\). Pruritus, sleep loss and fatigue improved significantly during AZA, but not during placebo treatment.

Another randomized double-blind, placebo-controlled, 12 weeks, clinical trial involved 63 outpatients with AE.50 Following a low-dose introduction phase, azathioprine was dosed in 42 patients according to the results of a thiopurine methyltransferase (TPMT) polymorphism, which may be indicative for the myelotoxicity of azathioprine – the other 21 patients received placebo. Patients with a normal TPMT activity were treated with 2.5 mg/kg/day AZA, whereas patients with a reduced TPMT activity (heterozygous phenotype) received 1.0 mg/kg/day AZA. The AZA regimen was more effective in AE, as the disease activity dropped by 37% in the azathioprine group and by 20% in the placebo group. None of the patients showed myelotoxic symptoms.

A prospective, randomized controlled trial showed equal clinically relevant improvement of AZA 1.5–2.5 mg/kg/day compared to methotrexate 10–22.5 mg/week after 12 weeks of treatment in adults with severe AE. Both treatments were safe in the short term.51

Twelve children with severe, recalcitrant AE were treated with oral AZA and followed prospectively. AZA therapy was associated with clinical improvement in all but one patient. There were few adverse effects.52

A retrospective, uncontrolled study investigated 48 children and adolescents aged 6–16 years diagnosed with severe AE.53 After 3 months of therapy, 28 patients showed very good and 13 patients showed good improvement of their symptoms, while seven patients showed little or no improvement. None of the patients showed myelotoxic symptoms, TPMT activity was determined in all patients before treatment. All patients were started on 2 mg/kg/day AZA, and the dose was increased to 3 mg/kg/day in 14 patients due to insufficient clinical response. The mean time to achieve clinical response was 4 weeks.

A retrospective, uncontrolled study in a heterogeneous group of 17 children and adults with a mean age of 16 years showed significant improvement of SCORAD after 3 and 6 months of AZA, and significant reduction in total serum IgE levels.54

Safety profile of azathioprine The authors of the Berth-Jones study concluded that AZA would be an effective and clinically
useful drug for treatment of severe AE, but would be associated with a high rate of unwanted drug effects. Leucocyte counts and liver enzymes must be controlled during therapy. The higher dose caused gastrointestinal symptoms in 14 patients; leukopenia in two and elevated liver enzymes in eight patients. Long-term efficacy and safety data in AE patients are sparse, but AZA increased the risk of non-melanoma skin cancer and lymphoma in inflammatory bowel disease patients.

Summary of evidence
AZA is effective for treatment of severe AE in adults. (1b)
One small prospective clinical trial in children showed efficacy of AZA.

Recommendations
- AZA may be used (off label) in adult AE patients, if cyclosporine is either not effective or contraindicated. (1b, A)
- AZA may also be used (off label) in children. (4, C)
- Patients should be screened for TPMT activity before starting AZA therapy to reduce the risk for bone marrow toxicity by dose adaptation. The suggested dose range is 1–3 mg/kg bw/day. (1b, A)
- Alternatively, an initial AZA dose of 50 mg/day in adults and a slow increase in the dose under close monitoring of full blood and liver function count is possible. (–, D)
- In pregnant women, AZA should only be used on strict indication. (–, D)
- AZA should not be combined with UV therapy, and effective UV protection should be used. (–, D)

Mycophenolate mofetil
Mycophenolate mofetil (MMF) is an immunosuppressant drug licensed in many European countries for the treatment of systemic lupus erythematosus and prevention of transplant rejection.

Table 1

<table>
<thead>
<tr>
<th>Grades of evidence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a)</td>
<td>Meta-analysis of randomized clinical trials (RCTs)</td>
</tr>
<tr>
<td>1b)</td>
<td>Single RCTs</td>
</tr>
<tr>
<td>2a)</td>
<td>Systematic review of cohort studies</td>
</tr>
<tr>
<td>2b)</td>
<td>Single cohort studies and RCTs of limited quality</td>
</tr>
<tr>
<td>3a)</td>
<td>Systematic review of case-control studies</td>
</tr>
<tr>
<td>3b)</td>
<td>Single case-control study</td>
</tr>
<tr>
<td>4)</td>
<td>Case series, case cohort studies or cohort studies of limited quality</td>
</tr>
</tbody>
</table>

Recommendations (see Table 2) were classified based on the grade of evidence.

<table>
<thead>
<tr>
<th>Recommendation strength</th>
<th>Evidence grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1a, 1b</td>
</tr>
<tr>
<td>B</td>
<td>2a, 2b, 3a, 3b</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
</tr>
<tr>
<td>D</td>
<td>Expert opinion</td>
</tr>
</tbody>
</table>

Controlled clinical trial data demonstrating efficacy There is one controlled trial with enteric-coated mycophenolate sodium (EC-MPS) vs. cyclosporine A as long-term treatment showing almost equal efficacy. Some case reports or uncontrolled clinical trial data from adults indicate that it would be clinically effective in AE. There is one uncontrolled retrospective report involving 14 children indicating efficacy in this age group, with MMF 40–50 mg/kg/day in younger children and 30–40 mg/kg/day in adolescents and another including 12 children. A fixed dose of 2 g MMF per day for adults is common practice in Europe.

Drug safety profile of MMF Gastrointestinal adverse events such as nausea or diarrhoea are the most relevant side-effect of MMF. They are most common during initiation of treatment and tend to disappear during long-term treatment. Leukopenia or thrombocytopenia may also occur. Recent data indicate that MMF should be discontinued 6 weeks before a planned pregnancy.

Summary of evidence
Positive case reports and uncontrolled clinical trial data indicate that MMF may be effective in AE. There is no randomized clinical trial data for use of MMF in children or adolescents. MMF and EC-MPS are both teratogenic substances.

Methotrexate (MTX)
The immunosuppressant MTX is frequently used in psoriasis, but there are little published data on its use in AE. Some clinicians have used this drug in AE with good responses since many years. MTX can be given by oral, intravenous or subcutaneous...
application. Funding of expensive clinical trials in the near future is unlikely.

Controlled clinical trial data demonstrating efficacy A randomized trial with MTX vs. Azathioprine showed comparable effects in severe AE.⁵¹

Forty children with severe AE were randomly assigned to receive either methotrexate 7.5 mg weekly or cyclosporine 2.5 mg/kg daily for 12 weeks. At week 12, patients in the methotrexate group had a mean reduction in SCORAD which was not statistically different from the cyclosporine-treated group. Both drugs were associated with minor adverse effects, none of which required changing the treatment regimen.⁶²

An open 24-week dose escalation clinical trial involving 12 adult patients investigated the efficacy of increasing doses MTX.⁶³ The starting dose of 10 mg/week was increased weekly in steps of 2.5 mg/week until clinical efficacy was seen. The skin score SASSAD improved by 52% after 24 weeks. The median dose administered was 15 mg MTX/week. Improvement remained stable in nine patients 12 weeks after end of treatment.

An uncontrolled, retrospective report involving 20 adult AE patients treated with 10–25 mg/week MTX showed response in 16 patients after 8–12 weeks.⁶⁴ First improvement was observed after a period ranging from 2 weeks to 3 months (mean 9.95 weeks ± 3.17). Treatment was more effective in adult onset AE than in childhood onset.

Table 3 Language of recommendations

<table>
<thead>
<tr>
<th>Wording in standard situations</th>
<th>Free text explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Must be used</td>
<td>This intervention should be done in all patients, unless there is a real good reason not to do it</td>
</tr>
<tr>
<td>Should be used</td>
<td>Most expert physicians would do it this way, but some would prefer other possible action</td>
</tr>
<tr>
<td>May be used</td>
<td>It would be correct to do this intervention, but it would also be correct not to do it; the choice depends largely on the specific situation</td>
</tr>
<tr>
<td>Is possible</td>
<td>Most expert physicians would do something else, but it would not be wrong to do it</td>
</tr>
<tr>
<td>May be used in selected patients only</td>
<td>This intervention is not adequate for most patients, but for some patients there may be a reason to do it</td>
</tr>
<tr>
<td>Is not recommended</td>
<td>Most expert physicians would not choose this intervention, but some specific situation may justify its use</td>
</tr>
<tr>
<td>Must not be used</td>
<td>This intervention is inadequate in most situations</td>
</tr>
</tbody>
</table>

Table 4 Systemic drugs for treatment of severe atopic eczema

<table>
<thead>
<tr>
<th>Overall recommendation</th>
<th>Cyclosporine</th>
<th>Methotrexate</th>
<th>Azathioprine</th>
<th>Mycophenolic acid</th>
<th>Corticosteroids</th>
<th>Dupilumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>++ acute flare intervention</td>
<td>++ long-term maintenance</td>
<td>Can be used long term</td>
<td>++ little toxicity</td>
<td>Outdated;‡</td>
<td>Long-term maintenance</td>
<td></td>
</tr>
<tr>
<td>Time to respond (weeks)§</td>
<td>2</td>
<td>8–12</td>
<td>8–12</td>
<td>8–12</td>
<td>1–2</td>
<td>4–6</td>
</tr>
<tr>
<td>Time to relapse (weeks)</td>
<td><2</td>
<td>8–12</td>
<td>>12</td>
<td>>12</td>
<td>>2</td>
<td>>8</td>
</tr>
<tr>
<td>Most important side-effects</td>
<td>Serum creatinine</td>
<td>Haematological liver enzymes</td>
<td>Haematological liver enzymes</td>
<td>Haematological skin infections gastro-intestinal</td>
<td>Cushing’s osteoporosis diabetes</td>
<td>Conjunctivitis</td>
</tr>
<tr>
<td>Starting dose adult</td>
<td>4–5 mg/kg/day</td>
<td>5–15 mg/week</td>
<td>50 mg/day;‡</td>
<td>MMF 1–2 g/day (EC-MPA 1.44 g/day)</td>
<td>0.2–0.5 mg/kg/day 600 mg loading dose</td>
<td></td>
</tr>
<tr>
<td>Maintenance dose adult</td>
<td>2.5–3 mg/kg/day</td>
<td>2–3 mg/kg/day†</td>
<td>MMF 2–3 g/day (EC-MPA 1.44 g/day)</td>
<td>Not for maintenance;‡</td>
<td>300 mg/2 weeks</td>
<td></td>
</tr>
<tr>
<td>Starting dose children</td>
<td>5 mg/kg/day</td>
<td>25–50 mg/day</td>
<td>MMF 20–50 mg/kg/day</td>
<td>0.2–0.5 mg/kg/day</td>
<td>No data yet</td>
<td></td>
</tr>
<tr>
<td>Maintenance dose children</td>
<td>2.5–3 mg/kg/day</td>
<td>Increase daily total dose by 500 mg every 2–4 weeks up to 30–50 mg/kg/day</td>
<td>Not for maintenance;‡</td>
<td>No data yet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pregnancy</td>
<td>Possible</td>
<td>Teratogenic, absolutely contra-indicated</td>
<td>Conflicting data, possible with strict indication</td>
<td>Teratogenic, absolutely contra-indicated</td>
<td>Possible</td>
<td>No data yet</td>
</tr>
<tr>
<td>Fathering</td>
<td>Possible</td>
<td>Little information, conflicting data, contra-indicated</td>
<td>Little information, possible with strict indication</td>
<td>Conflicting data</td>
<td>Possible</td>
<td>No data yet</td>
</tr>
</tbody>
</table>

†TPMT heterozygote 1–1.5 mg/kg/day; ‡See full text. §Time to reach most of expected full response.

EC-MPS, enteric-coated mycophenolic sodium; MMF, mycophenolate mofetil.
Forty children with severe AE were randomly assigned to receive either methotrexate 7.5 mg weekly or cyclosporine 2.5 mg/kg daily for 12 weeks. At week 12, patients in the methotrexate group had a mean reduction in SCORAD which was not statistically different from the cyclosporine-treated group. Both drugs were associated with minor adverse effects, none of which required changing the treatment regimen.62

Safety profile of MTX All available drug safety data for MTX are largely derived from clinical experience from other low-dose indications for MTX, indicating liver toxicity and teratogenicity as main areas of concern. There are no AE-specific safety data available for MTX.

Summary of evidence
An open, uncontrolled clinical trial, as well as broad clinical experience, indicates that MTX may be effective in AE.4 MTX is a teratogenic substance. (3a)

Recommended
- MTX may be used (off label) for treatment of AE in both adults and children. (4, C)
- The recommended dosing regimen is similar or slightly lower compared to psoriasis. (D, –)
- As MTX is teratogenic, men and women of childbearing potential must use effective contraception during therapy. (3a, B)

Biological agents
Biological agents (biologics) have been used in dermatology for more than 10 years for other inflammatory skin diseases, especially psoriasis, but so far only one registered biologic for AE is available in Europe. Biologics present a relatively new group of therapeutics created by using biological processes that include recombinant therapeutic proteins such as antibodies or fusion proteins. Biologics specifically target inflammatory cells and/or mediators, respectively. In AE, biologics may be helpful in reducing inflammation by modulating the number, activation and function of immune cells or the action of cytokines or disease relevant antibodies. Several case reports, pilot studies and retrospective analyses on the effect of biologics in patients with moderate-to-severe AE refractory to topical and/or systemic therapy have been published, and randomized, placebo-controlled studies evaluating the efficacy and safety of a few biologics in AE are now available.

Approved biologic therapy

Dupilumab Dupilumab, a fully human monoclonal antibody that blocks the common a-chain of the receptor for interleukin-4 and interleukin-13, has been approved as first-line treatment for moderate-to-severe adult AE in the USA in March 2017 and in Europe in September 2017. Dupilumab has previously shown efficacy in patients with asthma and elevated eosinophil levels and now also in AE.65 Randomized, double-blind, placebo-controlled trials involving adults who had moderate-to-severe AE were performed. In 4-week monotherapy studies, dupilumab resulted in rapid and dose-dependent significant improvements in pathophysiological and clinical parameters. Side-effect profiles were not dose-limiting, and mostly mild side-effects were observed. In a 12-week double-blind study where topical corticosteroids were combined with dupilumab or placebo, the group treated with dupilumab had significantly better effect on both AE activity and pruritus.65 The positive outcome for dupilumab-treated moderate-to-severe adult AE patients was confirmed in a double-blind, placebo-controlled study involving 380 randomly assigned to different dosages of dupilumab or placebo.66 Recently, the two identical phase III SOLO studies in adults have completed the clinical development programme for dupilumab, again confirming the efficacy of dupilumab monotherapy on skin signs and symptoms, and overall improvement of the QoL in AE. A significant proportion of patients achieved an IGA score of clear and almost clear and at least a 75% improvement in EASI score.67 The LIBERTY AD CHRONOS studies indicate

![Table 5 Upcoming systemic drugs for treatment of atopic eczema](image-url)
maintenance of efficacy over 1 year of continued treatment with dupilumab. The safety profile of dupilumab was good, with conjunctivitis being the only adverse event that was observed more frequently with dupilumab than with placebo. In view of all trials published so far, about 1/3 of all treated patients are clear or almost clear in IGA from their AE. Up to 70% of patients achieve an EASI 75 or higher skin improvement, and it takes about 4 weeks to reach the full clinical outcome. Skin signs, QoL and symptoms including pruritus significantly improved as early as 2 weeks after treatment initiation. Several ongoing studies involving both children and adolescents will show if these subgroups of the AE population may experience equally positive effects, expanding the treatment indication for dupilumab even further.

Summary of evidence

A number of large, randomized, placebo-controlled clinical trials indicate that dupilumab is effective in AE, with the response maintained for at least 1 year of continuous treatment in the majority of patients. (1b)

Dupilumab-treated AE patients did not show systemic side-effects in clinical studies, but showed a higher incidence of conjunctivitis. (1b)

Recommendations

- Dupilumab is recommended as a disease-modifying drug for patients with moderate-to-severe AE, in whom topical treatment is not sufficient and other systemic treatment is not advisable. (1, a)
- Dupilumab should be combined with daily emollients and may be combined with topical anti-inflammatory drugs as needed. (2, b)

Upcoming biologic therapy

Nemolizumab Nemolizumab, a humanized monoclonal antibody directed against the IL-31 receptor A, has shown efficacy in patients with moderate-to-severe AE. There was a significant improvement in the primary endpoint pruritus, as well as in the objective signs of the AE with, however, less efficacy. Nemolizumab is currently not approved for any indication (see Table 5).

Summary of evidence

A randomized, placebo-controlled clinical trial indicates that nemolizumab is effective in treating pruritus in AE patients. (1b)

Nemolizumab-treated AE patients did not show systemic side-effects in clinical studies, but showed a higher incidence of peripheral oedema. (1b)

Off-label use of other traditional biologicals

Rituximab The depletion of B cells by an anti-CD20 antibody, rituximab (2 × 1000 mg), resulted in a rapid reduction in skin inflammation in all patients with a sustained effect over 5 months in five of six patients. These results may suggest a pathogenic role of B cells in AE, although CD20 may also play a role in some DC-T-cell mediated reactions. A report on two cases of severe AE receiving rituximab could not confirm these findings.

Mepolizumab Inflammation in AE is characterized by a T helper 2 cytokine expression including interleukin (IL)-5 and eosinophil infiltration. Upon short-term therapy with the anti-IL-5 antibody mepolizumab (2 × 750 mg), a moderate improvement of clinical symptoms was observed, although a rapid depletion of eosinophils in the peripheral blood was noted. The patients were not stratified for eosinophilia in this study. Mepolizumab had no effect on atopy patch test reactions. Based on the promising results in AE and the experiences in bronchial asthma therapy, long-term trials with anti-IL-5 antibodies are now performed.

Omalizumab Most AE patients have elevated serum IgE levels, but the pathogenic role of IgE in AE remains unknown. In a placebo-controlled study in 20 patients, omalizumab administered for 16 weeks failed to improve AE symptoms and itch despite a depletion of free serum IgE and reduction in IgE receptor saturation. Other studies reported that accompanying AE significantly improved in patients receiving omalizumab because of severe bronchial asthma. First explorative open-label trials did not indicate good efficacy. An open-label study on 20 adult patients with severe AE has indicated an increased efficacy of omalizumab in patients with wild-type filaggrin status and high levels of phosphatidylcholines. An open-label study involving seven treatment refractory, paediatric AE patients treated with omalizumab for 12–68 months showed significant improvement of their AE. By contrast, a recent small, randomized, trial including eight children with severe treatment refractory AE treated for 24 weeks with omalizumab or placebo showed no significant clinical differences between the two groups and this was confirmed in another similar study. In summary, the data concerning omalizumab are conflicting, and omalizumab cannot be recommended for treatment of AE.

Ustekinumab By blocking IL-12 and IL-23, ustekinumab can regulate Th1, Th17 and also Th22 pathways, which are reportedly active in AE. Results regarding the use of ustekinumab in severe AE have, however, been conflicting and only case reports have been published so far. Some have reported significant improvement of AE, and some have not. The first two randomized controlled trials comprising 79 and 33 patients in total...
have been completed, and results are quite uniform showing no significant decrease in severity scores.85,86

Other substances Some older biologics such as infliximab or efalizumab, which are outdated for use in atopic dermatitis or withdrawn from the market, are not discussed anymore in this version of the guideline.

On the other hand, a number of highly interesting substances are in progress and may soon be registered for treatment of AE. Therefore, the committee decided to produce a table in the addendum on potential new biologics or small molecules for AE ‘in the pipeline’, which will be continuously updated by the guideline committee (Table 5). Substances to be included in this table will be, among others, the anti-IL-13 antibody tralokinumab, the anti-TSLP antibody tezepelumab and the Janus kinase (JAK) inhibitor upadacitinib.

Summary of evidence None of the traditional biologics has been approved for the therapy of AE in Europe. At present, the use of traditional biologics in AE should be tried only in patients with severe AE refractory to other topical and/or systemic treatment. Besides the lack of efficacy and safety data in AE, the potential side-effects must be taken into account before using biologics. On the other hand, treatment with biologics may provide important information on pathogenetic mechanisms in AE. Today, the imminent availability of Th2-blocking biologics has further reduced the clinical need for experimental therapy with traditional biologics. (−)

Recommendations

• A therapy of AE with traditional biologics (rituximab, omalizumab or ustekinumab) cannot be recommended. (4, C)
• A therapy of AE with mepolizumab may be tried in selected cases unresponsive to standard therapy. (−, D)

Other systemic treatment

Alitretinoin
Alitretinoin is a retinoid binding both retinoid and rexinoid receptors, thus delivering anti-inflammatory and antiproliferative effects. It is licensed in some European countries for the treatment of chronic hand eczema irrespective of its pathogenesis.

Controlled clinical trial data demonstrating efficacy There is one large, multicenter randomized, placebo-controlled clinical trial involving 1032 patients with chronic hand eczema, about one-third of which are probably atopic hand eczema patients.87 Improvement of eczema symptoms was seen in 75% of the patients. The response rate of hyperkeratotic hand eczema (49%) and pulpitis sicca type patients (44%) was higher than the dyshidrosiform subtype of hand eczema (33%). The patient group suffering from atopic hand eczema has not been analysed separately, and extrapalmar symptoms have not been assessed in this trial.

Six patients with AE and prominent hand involvement have been treated with alitretinoin for 12 weeks in an uncontrolled, open-label trial.88 Palmar and extrapalmar lesions improved during the trial, as shown by the mTLSS hand eczema score and the SCORAD.

Drug safety profile of alitretinoin As alitretinoin is highly teratogenic, all females of childbearing potential must adhere to a strict birth control programme. Headache is the most frequent clinical side-effect of alitretinoin especially in the first 2 weeks of treatment. Serum lipid and TSH elevation may also occur.

Summary of evidence Direct evidence from an uncontrolled clinical trial, as well as indirect evidence from a large, double-blind, placebo-controlled clinical trial indicates that alitretinoin may be effective in atopic hand eczema.4 Alitretinoin is a teratogenic substance. (−)

There are no trial data for its use in children or adolescents. (−)

Recommendations

• Alitretinoin may be used for atopic hand eczema in adult patients of non-childbearing potential unresponsive to topical steroid therapy. (1b, A)
• Alitretinoin might lead to an improvement of both extrapalmar and hand lesions in AE patients. (4, C)

Apremilast
Apremilast is a small-molecule phosphodiesterase (PDE) 4 inhibitor that has been approved for the treatment of psoriasis arthritis and moderate-to-severe plaques psoriasis. Blocking PDE4 increases intracellular adenosine monophosphate levels resulting in a downregulation of proinflammatory cytokines such as IL-2, IL-5, IL-13 and increased production of the regulatory cytokine IL-10. A pilot study investigating the effect of apremilast in patients with moderate-to-severe AE has demonstrated moderate improvement of skin lesions, pruritus and
QoL, but the drug development programme of apremilast for AE has been stopped.

Recommendations
- Apremilast may be used in selected cases unresponsive to standard therapy for treatment of AE. (−, D)

Tofacitinib
So far only one small open-label trial with the oral JAK inhibitor tofacitinib citrate has been performed in six patients with moderate-to-severe, treatment refractory AE. After 8–29 weeks of treatment, they had a mean SCORAD reduction of 66%. No adverse events were observed.90

Recommendations
- There is not enough evidence to support the use of tofacitinib in AE. (4, C)

Immunoadsorption
Immunoadsorption (IA) has been used in patients with AE and high serum IgE levels based on the assumption that a reduction in IgE might result in a reduction in disease activity. An investigator initiated open-label pilot study in patients with severe AE refractory to topical and systemic therapy showed that IA resulted in a significant decrease in SCORAD 3 weeks after the first cycle of 5 IA and a further improvement after the second cycle 1 month apart, and in parallel a reduction in skin-bound IgE.91 A recent study confirmed these results and showed long-term clinical effect of IA in AE patients.92 Another pilot study in severe AE showed a beneficial effect of immunoadsorption together with subcutaneous application of omalizumab; the serum levels of free IgE and the SCORAD decreased significantly.93

Recommendations
- Immunoadsorption might be considered for patients with severe AE and high serum IgE levels if the technology is available. (4, C)

Mast cell stabilizers
Mast cell stabilizers inhibit mast cell degranulation and thus prevent the release of histamine and other mediators. Oral cromolyn, ketotifen and pemirolast are used for asthma and other allergic diseases, but have not shown any significant effect for the treatment of AE. In the last 5 years, studies investigating these substances in AE have not been published.

Recommendations
- Mast cell stabilizers are not recommended for the treatment of AE. (−)

Leukotriene antagonists
Montelukast is a cysteinyl leukotriene receptor antagonist that blocks the action of LTD4, LTC4 and LTE4. It has been used at doses of 10 mg daily (5 mg/day in children below 12 years), with some reduction in SCORAD indexes.94,95 A systematic review stated that limited evidence exists to recommend montelukast for the treatment of AE.96 Studies on leukotriene antagonist zafirlukast for the treatment of AE have not been reported in the last 5 years.

Recommendations
- There is not enough evidence to support the use of leukotriene antagonists in AE. (2a, B).

Intravenous immunoglobulin
Intravenous immunoglobulins (IVIG) are considered as immunomodulatory substances, but not as immunosuppressive agents. IVIG have been tried for both adults and children with severe, treatment refractory AE, but clinical trials did not indicate a high efficacy or quick onset of action despite the high cost of treatment.97,98 IVIG may be considered as a last resort treatment in severe, treatment refractory AE in children only. It is likely that the availability of novel biologics for AE may further reduce the indication for IVIG in AE.

Recommendations
- The use of IVIG in AE is not recommended. (4, D)

H1R-blocking antihistamines
Traditional histamine 1 receptor (H1R)-blocking antihistamines have been used for decades, in an attempt to relieve pruritus in patients with AE. However, only a few randomized controlled trials have been conducted and they have in the majority shown only a weak or no effect in decreasing pruritus.99–104 According to a Cochrane search, randomized controlled trials investigating the efficacy of antihistamine monotherapy in AE patients are lacking.105
The first generation of sedative antihistamines such as hydroxyzine, clemastine fumarate, doxylamine and dimetindene maleate may allow better pattern in acute situations with exacerbations of AE (evidence level D). Concerning the newer non-sedating antihistamines, studies using loratadine, cetirizine or fexofenadine demonstrated no or only a weak relief of pruritus in AE.106–108 A significant, but clinically small, antipruritic effect of fexofenadine 60 mg twice daily has been described.109 An effect on itch of a high dosage of 20–40 mg cetirizine daily has been observed, but this effect was primarily attributed to sedation.107

The corticosteroid sparing effect of cetirizine in infants with severe AE has been attributed to its decreasing effect on sleep quality.111 Possible mechanisms of action of second-generation antihistamines are a reduction in the urticarial component of AE, and blocking histamine interaction with bradykinin, downregulation of transcription factors resulting in a decrease in proinflammatory cytokine production.112

In general, antihistamines are safe to use, also for a long period of time,113 and the major advantage seems to be relief of the symptoms of comorbidities such as allergic asthma, rhinoconjunctivitis, uricarial dermatographism and urticaria. Topical antihistamines have no effect on itch beyond that of their cooling vehicles.

H4R-blocking antihistamines

Among the 4 histamine receptors described in humans, the histamine 4 receptor (H4R)-blocking antihistamines represent an additional promising treatment for AE.114 Clinical trials have been performed with H4R-blocking agents, but the results are not published yet.

Recommendations

- There is not enough evidence to support the general use of both first- and second-generation H1R antihistamines for treatment of pruritus in AE. These may be tried for treatment of pruritus in AE patients, if standard treatment with TCS and emollients is not sufficient. (1b, A)
- Long-term use of sedative antihistamines in childhood may affect sleep quality and is therefore not recommended. (−, D)

Allergen-specific immunotherapy

Allergen-specific immunotherapy (ASIT) has been investigated for treatment of AE, and the two relevant therapeutic regimens are subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT).

Introduction to allergen-specific immunotherapy for AE

Some efficacy of allergen-specific immunotherapy (ASIT) in AE has been shown in a number of case reports and smaller cohort studies,115,116 and more recently in a larger multicenter trial with subcutaneous house dust mite immunotherapy.117 These data showed that ASIT can be used for treatment of allergic rhinitis or mild asthma also in AE patients, since the AE was obviously not worsened and sometimes even improved during or after ASIT. A few prospective studies have been performed which address the question if AE alone may be an indication for ASIT.

Even if the results of the studies are interpreted very carefully with regard to the therapeutic effects of ASIT, it is remarkable that exacerbations of the skin disease during treatment were rare, while the treatment was well tolerated in most patients. The same was true for studies in patients with coexistent AE who were treated with ASIT for respiratory atopic diseases and experienced not more often flares of eczematous skin lesions. The role of allergens in the pathophysiology of AE has been proven in controlled studies on allergen avoidance and atopy patch testing.118–120 In respiratory atopic diseases, ASIT plays an important role not only for treatment, but also for the prevention of further sensitizations and progression to more severe respiratory disease (change from rhinitis to bronchial asthma).

Hypothetically, patients with a positive atopy patch test and corresponding history of eczema flares may be candidates for ASIT with the eliciting allergen. The performed studies point to the safety of ASIT also in AE, if the treatment is performed according to the guidelines. However, the final judgement on the efficacy of ASIT in this diagnosis is still not possible due to the lack of large, controlled and randomized clinical trials with modern allergen vaccines.116

Evidence from controlled clinical trials

Experience in a pair of monozygotic twins with AE (with spring and summer exacerbations) treated either with grass pollen ASIT or placebo in a double-blind fashion showed significant improvement and decrease in serum IgE in the patient treated with ASIT.121 Several open uncontrolled study designs also demonstrated advantages of ASIT in patients with AE, and these data were often published in national or non-angloaxon journals. Some investigators in the 1970s and 1980s also showed improvement of AE in controlled trials.116

Subcutaneous immunotherapy (SCIT)

A double-blind controlled trial of ASIT with *Dermatophagoides pteronyssinus* in children with AE failed to demonstrate superiority over placebo after a standard 8-month course of treatment with tyrosine-
adsorbed house dust mite extracts in 24 house dust mite-allergic children with AE.122 However, in a second study phase children were randomly allocated to continue with active treatment or placebo for a further 6 months. The placebo effect was high, and the numbers were too small to permit confident conclusions, but the clinical scores suggested that prolonged ASIT may be effective with regard to several objective parameters of AE severity.122

A small placebo-controlled study showed AE improvement in 13 of 16 ASIT-treated AE patients, whereas only 4 of 10 placebo-treated AE patients improved.123 Similar results were reported for AE lesions under ASIT with house dust mite extracts.124,125 Oral ASIT for *D. pteronyssinus* was not effective in a controlled study enrolling 60 children with AE which were followed for 3 years.126 Conventional s.c. ASIT (*n* = 41; 76% improved) and sublingual ASIT (SLIT; *n* = 48; 64% improved) showed some efficacy, with adverse drug reactions occurring in 15–20% of both groups.127 A controlled study applying SLIT with house dust allergens was performed in 56 children with AE aged 5–16 years, but the outcome of this intervention was positive only in patients with mild to moderate AE, but not with severe AE.128

A pilot study reported the improvement of AE together with changes in T-cell subpopulations induced by IFN gamma pre-treatment before ASIT with house dust mite allergens. Patients receiving placebo, IFN gamma only or ASIT only showed no treatment effect.129

A large randomized, assessor-blinded clinical trial investigated 89 patients with AE showing a sensitization to house dust mite (CAP-FEIA ≥ 4).117 Patients were injected weekly with three different doses of HDM allergen extract. With higher allergen doses, a beneficial SCORAD decrease occurred after 8 weeks compared to a control group with an ‘active placebo’ consisting of very low allergen dose. The effect was maintained over 1 year and was accompanied by lower glucocorticoid use.

A smaller DBPC study involving 20 patients with HDM- or grass pollen sensitization also showed objective and subjective symptom relief accompanied by immunological changes under ASIT.130

Another large, randomized double-blind placebo-controlled study investigated 168 adult AE patients for 18 months. The study did not reveal efficacy in the AE patients studied, but a subgroup analysis showed statistical significance of SCORAD reduction in subgroup of severe AE patients with SCORAD > 50.131 Longer treatment duration was associated with higher efficacy. The best outcome was observed during September to February, which may be due to the use of indoor heating and subsequent high HDM exposure.

A systematic review and meta-analysis of randomized controlled trials published until December 2012 assessed the efficacy of immunotherapy for AE. Eight randomized controlled trials that comprised a total of 385 subjects were analysed. It has been found that ASIT has a significant positive effect on AE patients [odd ratio (OR), 5.35; 95% CI, 1.61–17.77; number needed to treat 3; 95% CI, 2–9]. ASIT showed also significant efficacy in long-term treatment (OR, 6.42; 95% CI, 1.31–7.48) for severe atopic dermatitis (OR, 3.13; 95% CI, 1.31–7.48), and when administered subcutaneously (OR, 4.27; 95% CI, 1.36–13.39). This meta-analysis provides moderate level evidence for the efficacy of SCIT in AE. However, these findings are based on an analysis of a small number of patients, with considerable heterogeneity among trials.132

Sublingual immunotherapy (SLIT) A first 18 months, placebo-controlled study investigating the effects of SLIT on AE found a significant decrease in the SCORAD starting from month 9.128

Another study analysed 107 patients undergoing SLIT for 12 months. A total of 84 patients finished the trial, compared to the placebo group (53.85%), and the treatment group (77.78%) showed improvement in symptoms.133

Another group of authors has investigated SLIT in AE patients allergic to HDM in a murine model.134 The mouse model induced by *Der f* allergen extract reflected the typical hallmarks of AE in humans. In the *Der f* allergens-sensitized mice, SLIT treatment with *Der f* vaccine significantly inhibited AE symptoms through correction of Th2 and Th1 cytokine predominance; therefore according to the authors, SLIT could be considered as an alternative treatment for patients with extrinsic AE.

Summary of evidence

There is conflicting evidence regarding ASIT in AE, with more recent literature being more in favour of it. ASIT may have positive effects in selected, highly sensitized patients with AE. (2a)

The best evidence so far is available for ASIT with house dust mite allergens. (2a)

There is no contraindication for performing ASIT in patients with respiratory allergic diseases (allergic rhinoconjunctivitis, mild allergic bronchial asthma) and concomitant AE. (2b)

Recommendations

- ASIT is currently not recommended as a general treatment option for AE. (2a, B)
- ASIT may be considered for selected patients with house dust mite, birch or grass pollen sensitization, who have severe AE, and a history of clinical exacerbation after exposure to the causative allergen or a positive corresponding atopy patch test. (2a, B)
(a) Treatment recommendation for atopic eczema: adult
- For every phase, additional therapeutic options should be considered
- Add antiseptics / antibiotics in cases of superinfection
- Consider compliance and diagnosis, if therapy has insufficient effect
- Refer to guideline text for restrictions, especially for treatment marked with ¹
- Licensed indication are marked with ², off-label treatment options are marked with ³

SEVERE:	Hospitalization; systemic immunosuppression: cyclosporine A ², short course of oral glucocorticosteroids ³, dupilumab ¹ ², methotrexate ³, azathioprin ³, mycophenolate mofetil ³; PUVA ¹; alitretinoin ¹ ³
MODERATE:	Proactive therapy with topical tacrolimus ² or class II or class III topical glucocorticosteroids ³, wet wrap therapy, UV therapy (UVB 311 nm, medium dose UVA1), psychosomatic counseling, climate therapy
MILD:	Reactive therapy with topical glucocorticosteroids class II ² or depending on local cofactors: topical calcineurin inhibitors ², antiseptics incl. silver ², silver coated textiles ¹
BASELINE:	Educational programmes, emollients, bath oils, avoidance of clinically relevant allergens (encasings, if diagnosed by allergy tests)

(b) Treatment recommendation for atopic eczema: children
- For every phase, additional therapeutic options should be considered
- Add antiseptics / antibiotics in cases of superinfection
- Consider compliance and diagnosis, if therapy has insufficient effect
- Refer to guideline text for restrictions, especially for treatment marked with ¹
- Licensed indication are marked with ², off-label treatment options are marked with ³

SEVERE:	Hospitalization, systemic immunosuppression: cyclosporine A ³, methotrexate ³, azathioprin ³, mycophenolate mofetil ³
MODERATE:	Proactive therapy with topical tacrolimus ² or class II or III topical glucocorticosteroids ³, wet wrap therapy, UV therapy (UVB 311 nm) ¹; psychosomatic counseling, climate therapy
MILD:	Reactive therapy with topical glucocorticosteroids class II ² or depending on local cofactors: topical calcineurin inhibitors ², antiseptics incl. silver, silver coated textiles
BASELINE:	Educational programmes, emollients, bath oils, avoidance of clinically relevant allergens (encasings, if diagnosed by allergy tests)

Figure 1 Treatment recommendations for adults (a) and children (b) with atopic eczema.
Complementary and alternative medicine in atopic eczema

There is evidence of growing interest of so-called complementary alternative medicine (CAM) as treatment for AE.135–137 CAM has been defined as ‘diagnosis, treatment or prevention which complements mainstream medicine by contributing to a common whole, by satisfying a demand not met by orthodoxy or by diversifying the conceptual frameworks of medicine’.136 This chapter summarizes available RCT-based evidence on CAM for AE.

Essential fatty acids

The most commonly used preparations in the treatment of AE are polyunsaturated fatty acids, evening primrose oil (EPO), borage oil (BO), or animal and fish oil. A systematic review published in 2016 showed conflicting results on EPO.138–141 Four smaller trials,142–145 as well as two larger trials146,147 and an Indian study on EPO148 also gave conflicting results.

Negative results were obtained in a trial on eicosapentaenoic acids from Germany.149 A study from Berlin compared the daily administration of 5.4 g docosahexaenoic acid (DHA) in 21 patients who completed the trial with an isoenergetic control of fatty acids (\(N = 23\)) over 8 weeks. The SCORAD dropped significantly in the DHA group, however, significant differences to control were not observed.150

In a comparison of dietary hempseed oil with olive oil, some parameters of skin physiology and symptoms improved under hempseed oil, but obviously without significant difference to the control group.151

A RCT in 20 hospitalized patients with AE comparing infusions of fish oil to soya bean oil revealed marked improvements within 1 week in both groups but a significantly greater effect in those treated with fish oil.152 Some smaller RCTs have also indicated a beneficial effect,153–155 although the largest and well reported trial did show a difference between the fish oil and the placebo.156

Evening primrose oil has also been used as topical treatment. Although a pilot study has indicated some beneficial effects,157 further studies were unable to establish a dose–response relationship.158 Additional studies could not prove a beneficial effect on skin barrier function.159 Large trials on that issue, however, are lacking.

In one pilot study, the addition of gamma-linolenic acid to emollients was able to decrease elevated TEWL in atopic eczema.160 The most recent Cochrane review on EPO and BO included 19 studies on EPO and 8 on BO.161 The authors concluded that EPO and BO lack effect on AE and that further studies would be hard to justify.

Summary of evidence

There is partly conflicting, mostly negative evidence regarding the efficacy of oral or topical applications of unsaturated fatty acids in the treatment of AE. (1a)

Recommendations

\begin{itemize}
 \item Oral application of unsaturated fatty acids is not recommended for treatment of AE. (1a, A)
 \item Topical application of unsaturated fatty acids as an ingredient in emollients may be tried in selected cases. (D, −)
\end{itemize}

Phytotherapy

Detailed background information on herbal therapy in dermatology is published.162 Two RCTs investigated the efficacy and safety of topical chamomile preparation163 and a hypericum extract cream for AE.164 The chamomile cream was moderately superior to 0.5% hydrocortisone cream regarding pruritus, erythema and desquamation, but not different to the vehicle cream. The cream containing hypericum extract standardized to 1.5% hyperforin was compared to the corresponding vehicle cream in a half-side comparison in 18 patients with mild to moderate AE. The modified SCORAD index improved over 4 weeks with both therapies, but the improvement was significantly higher under active treatment. A further study compared a topical preparation of Mahonia aquifolium, Viola tricolor and Centella asiatica with the vehicle cream in 88 patients and could not find significant differences.165 A subgroup analysis revealed superiority of the plant preparation under dry and cool weather conditions.

Plant extracts are well known to induce contact sensitisation and subsequent contact allergy.166,167 It was demonstrated that so-called phytocosmetic creams containing a mixture of plant extracts may also contain triamcinolone acetonide as an active ingredient.168 The concerns regarding side-effects of phytotherapy with crude plant extracts must not be generalized to emollients containing protein free oat plantlet extracts.169,170 (see section ‘Emollients plus’ in chapter ‘Basic therapy’).

Summary of evidence

Besides many negative results, there is only one small RCT indicating a beneficial effect of hypericum cream as a topical phytotherapy. (1b) Topical use of crude plant extracts may cause contact sensitization and contact dermatitis. (1a, A)
Recommendations

- Topical use of crude plant extracts is not recommended for treatment of AE. (1b, C)

Chinese herbal medicine (CHM)

Chinese herbs are part of the traditional Chinese medicine which consists of Chinese herbs administered orally or topically, acupuncture, diet and exercise.\(^{171,172}\) CHM is promoted as treatment for AE, taken orally as decoction, usually consisting of about 10 different herbs. The first positive RCTs of CHM in the treatment of AE outside China were published by Sheehan in 1992.\(^{173}\) Serious adverse effects including fatal hepatitis have been reported by independent investigators following these trials.\(^{171,174–176}\) Further trials on Zemaphyte\(^{177}\), a commercial product of Chinese herbs, revealed conflicting results.\(^{177,178}\)

The oral application of a combination of *Eleutherococcus*, *Achillea millefolium* and *Lamium album* was not superior to placebo after 2 weeks.\(^{179}\)

The most recent Cochrane review on CHM included 28 studies encompassing 2306 patients.\(^{180}\) When compared to placebo, CHM showed higher clinical effectiveness (RR 2.09, 95% CI 1.32–3.32) in two studies. The total effectiveness rate in CHM groups was found to be superior (RR 1.43, 95% CI 1.27–1.61) when compared to conventional therapy in 21 studies. The authors assessed most studies at high risk of bias and found substantial inconsistency between studies. Therefore, it was concluded that there is no conclusive evidence that CHM could reduce the severity of AE. A similar result was achieved by the systematic review of Tan and co-workers.\(^{181}\) The most recent RCT showed significant effects of CHM on SCORAD and QoL scores when compared to the placebo group.\(^{182}\)

Summary of evidence

There is no conclusive evidence to support the use of Chinese herbs in the treatment of AE. (1a)

Recommendations

- The use of Chinese herbs is not recommended for treatment of AE. (1a, A)

Acupuncture/Acupressure

Acupuncture has been studied considering allergen-induced itch as primary endpoint but not systematically or within randomized controlled trials as a treatment for AE. Case series of patients including those with AE indicate some beneficial effects but studies implying a rigorous methodology are needed.\(^{183–186}\) There is initial evidence from a small pilot trial that acupressure might be helpful in reducing pruritus and lichenification in AE patients.\(^{187}\)

Summary of evidence

There is absence of evidence to support the use of acupuncture or acupressure in the treatment of AE. (−)

Recommendations

- The use of acupuncture or acupressure is not recommended for treatment of AE. (−, D)

Autologous blood therapy

One RCT compared the intramuscular re-injection of 1–3 mL autologous blood over 5 weeks to the injection of the equivalent amount of sterile saline solution.\(^{188}\) Patients were recruited via press advertisement and finally 30 subjects participated. Over a 9-week period, AE severity measured by SASSAD dropped significantly in the verum group from 23.2 to 10.4 and did not change in the placebo group (21.0–22.5). Significant differences were not observed in health related quality of life and the subjective assessment of pruritus skin appearance and sleep quality. The data suggest a beneficial effect of autologous blood therapy with respect to the signs score. This finding should be confirmed in larger trials and different settings.

Summary of evidence

There is very limited evidence supporting the use of autologous blood therapy in the treatment of AE. (2b)

Recommendations

- The use of autologous blood therapy is not recommended for the treatment of AE. (2b, B)

Bioresonance

One RCT has been published so far, comparing bioresonance with a sham (inactive pseudo-) procedure in 36 children with AE attending a specialized rehabilitation unit in Davos, Switzerland.\(^{189}\) After 4 weeks, AE severity had improved in both groups with slight superiority of the active group but without statistical significance. Further studies under more usual outpatient conditions are needed.
Summary of evidence

Current evidence from a single trial does not indicate a substantial clinical effect of bioresonance for treatment of AE. (2b)

Recommendations

- The use of bioresonance for treatment of AE is not recommended. (2b, B)

Homoeopathy

Homoeopathy is a system of alternative medicine created in 1796 by Samuel Hahnemann, based on his doctrine of like cures like. Large case series illustrating the therapeutic benefits of homeopathy have been published as papers or books.190,191 A recent uncontrolled trial of 17 patients with longstanding AE in Japan revealed a marked improvement after the introduction of homeopathic treatment.192 A classical randomized placebo-controlled trial was initiated in Germany including 60 patients,193 showing no difference between placebo and verum homeopathy in the outcome of AE.194

Summary of evidence

There is absence of evidence to support the use of homeopathy in the treatment of AE. (2b)

Recommendations

- The use of homeopathy is not recommended for treatment of AE. (2b, B)

Massage therapy/aroma therapy

The effect of additional massage therapy for AE, applied daily for 20 min over a 1 month period compared to standard therapy alone, was investigated in a randomized trial in 20 children.195 Greater degrees of improvement in anxiety scores, tactile defensiveness and coping index were reported by parents of children in the active group. Furthermore, clinical signs such as scaling and excoriation improved significantly in the massage group. Appropriate statistical comparisons between groups, however, were not performed. A further small crossover trial in eight children compared massage with essential oils (aroma therapy) to conventional massage.196 Both treatment groups improved significantly without significant differences between groups. Given the small sample size, conclusions on the beneficial effects of additional aroma therapy cannot be drawn.

Summary of evidence

There is insufficient evidence to support the use of massage/aroma therapy in the treatment of AE. (2b)

Recommendations

- The use of massage/aroma therapy is not recommended for treatment of AE. (4, C)

Salt baths and thermal spring water balneotherapy

Salt bath has been used for a long time to control chronic inflammatory skin diseases, especially psoriasis. Based on this experience and anecdotal evidence, salt was recently recommended also in the treatment of AE. The efficacy of salt bath alone, however, has not been studied systematically in AE. In the current reports, salt baths were investigated as part of a complex climatotherapy or in combination with UV therapy.197-204 From these studies, it cannot be concluded that salt baths provide a consistent and significant clinical effect on AE. Conventional balneotherapy with or without synchronous UV therapy has been shown to be effective in AE but was not considered as CAM in this chapter. Balneotherapy with thermal spring water has been shown to be beneficial in children with mild to moderate AE with an effect similar to mid-potency topical corticosteroids.205

Summary of evidence

There is insufficient evidence to support the use of salt baths in the treatment of AE. (2b)

Recommendations

- The use of salt baths is not generally recommended for treatment of AE. (4, C)
- Thermal spring water balneotherapy may be considered in mild to moderate AE (B, 2a, 2b)

Vitamins and minerals

A total of six trials were identified investigating vitamins or minerals in the treatment of AE.206-211 A placebo-controlled study from Italy studied oral vitamin E (400 IU) in 96 patients.210 Greater clinical improvement was reported for the vitamin E group but without results of statistical tests. Similarly, a smaller study of 49 patients comparing vitamin E plus vitamin B2 to vitamin E or vitamin B2 alone
revealed a superiority of the combination treatment with respect to the physician’s assessed overall usefulness and global rating. A further trial in 60 adults with AE compared selenium or selenium plus vitamin E vs. placebo over a 12-week period. The AE severity score fell in all three study arms without significant differences. A Hungarian study compared multivitamin supplementation in 2090 pregnancies to trace element supplementation in 2032 pregnancies over a 17-month period. AE occurred more frequently in the multivitamin group (0.7% vs. 0.2%). Although this unexpected result could be a chance finding as suggested by the authors, detailed studies in the prospective setting are needed. A small trial has investigated the zinc supplementation vs. placebo in 15 children over a 2-month period. The severity score increased in both study groups without significant differences. There is one published RCT comparing pyridoxine (vitamin B6) vs. placebo in 41 children over a 4-week period. The median severity score increased in the pyridoxine group, whereas an improvement was observed in the placebo group. None of the differences were statistically significant.

Summary of evidence
There is preliminary evidence that vitamins, especially vitamin E and D, may be useful in the treatment of AE. (1b)

Recommendations
- There is not enough evidence to recommend vitamin supplementation for routine use in AE patients. (2b, B)

Topical vitamin B12 in avocado oil
There are two smaller studies with half-side comparisons, which indicate a mild beneficial effect of a preparation containing 0.07% vitamin B12 in avocado oil compared to a placebo preparation.

Summary of evidence
There is preliminary evidence that a topical preparation of Vitamin B12 in avocado oil may be useful in the treatment of AE. (2b)

Recommendations
- There is not enough evidence to recommend topical preparations of Vitamin B12 in avocado oil for routine use in AE. (2b, B)

Harms of CAM
Contrary to widespread assumptions of the public, CAM is not free of side-effects. Dietary regimens involving strong restrictions can lead to harmful sequels in terms of malnourishment. Therapeutic procedures involving organic material from plants or animals can be associated with severe toxic or allergic reactions. Finally, patient’s and parent’s adherence to assuming effective CAM may delay or hinder a severely affected patient’s access to effective or even lifesaving therapy.

Psychosomatic counselling
Psychological and emotional factors influence the clinical course of AE, which is mirrored in the German term ‘neurodermitis’. Interventions including patient education, eczema action plans, and a quick return for a follow-up visit improve adherence. The reason for treatment failure in more than one-half of patients referred to specialist centres is that the treatment is not being administered. Doctors often have insufficient time to educate patients and their caregivers about the correct application of ointments and creams, and this adversely affects compliance. Many countries have patient organizations and support groups that provide useful supplementary literature.

Poor adherence to treatment
Poor adherence to treatment is a major factor limiting treatment outcomes and may have different causes: stress can elicit severe exacerbations of eczematous skin lesions. The itch-scratch cycle is especially vulnerable to psychological influences and can show a tendency to self-perpetuation. Psychosomatic disease in the sense of anxiety or depression can be a comorbidity of AE. Intrafamilial psychodynamics are also well-known factors influencing the clinical course of AE.

Educational interventions
A Cochrane review analysed ten RCTs of psychological or educational interventions, in addition to conventional therapy, for AE in children. One study of a psychological intervention used biofeedback and hypnotherapy as relaxation techniques vs. discussion only. Three of the four educational
studies identified significant improvements in disease severity in the intervention groups. The fourth trial evaluated long-term outcomes and found a statistically significant improvement ($P < 0.01$) in disease severity and parental quality of life over 12 months in all studied age groups (3 months to 18 years). Heterogeneity in outcome measures and inadequate methodology limited data synthesis in this review. The psychological and educational interventions were delivered by nurses or multidisciplinary teams. Quality of life (QoL) is severely impaired in AE patients, as shown in a recent review: Statistically significant improvements in QoL of AE patients by patient education were reported in five studies, whereas the severity of skin disease improved significantly in three studies of ten studies evaluated. In conclusion, patient education appears to be effective in improving QoL and in reducing the perceived severity of skin disease. (See chapter: Educational interventions for AE).

Psychotherapeutic approaches
Most psychological training programmes include relaxation techniques, habit training for social competence and communication as well as coping behaviour and improvement of self-control with regard to disrupting the itch-scratch cycle.

Psychosomatic counselling Randomized controlled trials compared the use of topical corticosteroid alone with steroids together with a behavioural therapy programme which led to a significantly pronounced improvement of skin condition and itch-scratch behaviour.

Behavioural therapy Behavioural therapy against itch was studied in a standardized educational programme (see chapter: Educational interventions for AE).

Autogenic training Together with cognitive behavioural therapy was studied in a standardized educational programme (see chapter ‘Education’).

Relaxation Relaxation methods may be more effective in reducing disease severity than discussion only.

Parents who had negative treatment experiences in the past and possessed only poor coping abilities with regard to scratch control benefitted the most from the training programme. The outcome of the education measure was independent of parents’ schooling, vocational level and income. Another publication stated that there is currently only limited research evidence on the effect of educational and psychological approaches when used alongside medicines for the treatment of childhood eczema. It is well possible that there is limited research activity in this area of intervention, thus providing limited evidence of the measurable effects of interventions.

Summary of evidence
Psychosomatic counselling can be a helpful adjuvant procedure in the management of patients with AE including psychotherapeutical approaches and behavioural therapy techniques. Relaxation techniques may cause significant improvements in disease severity. Individual psychotherapeutic approaches can be helpful in individual patients. Psychological and psychosomatic interventions are an essential and helpful part of educational programmes.

Recommendations
- Psychosomatic counselling, psychotherapeutical approaches, behavioural therapy techniques, autogenic training, relaxation techniques, psychological and psychosomatic interventions are recommended in selected patients.
- The indication should be confirmed by specialists in the field of psychodermatology.

Educational interventions for atopic eczema
Adherence to treatment and poor quality of life (QoL) are key issues in patients with AE. Patient education (PE) interventions can help patients and their families to better understand their disease and cope with treatment in order to maintain or even improve QoL and treatment adherence. The aim of PE is not simply to provide information by leaflets in the waiting rooms, but entails the transfer of skills (e.g. self-management of the disease, treatment adaptation) from a trained healthcare professional to the patient or their parents. Additionally, PE should aim to reduce doctor’s visits, facilitate a better partnership between the doctor and the patient/parents and restore family dynamics. PE should also lead to a decrease in the long-term costs of AE treatment. A recent study showed that parents with negative treatment experiences in the past and poor coping abilities regarding scratch control benefitted most from PE programmes.

High-quality PE programmes should ideally be evidence-based, tailored to a patient’s individual educational and cultural background (rather than being standardized in form and content) and have well-defined content and activities.

Educational service delivery models
There are different types of PE programmes running all around the world. These differ in number and certification of the educators, number of participants, age of patients, teaching techniques, duration and frequency of
interventions. Thus, because the content of the PE programmes varies greatly, comparison between studies is difficult. For example, while the intervention by Staab entailed 2-h sessions, involving a trained multidisciplinary team, once a week for 6 weeks, the intervention by Shaw et al. involved a trained medical student running a single 15-min session. Most of the published intervention programmes are structured as follows:

Multidisciplinary age-related structured group training educational programmes (eczema school) There is evidence that structured age-related programmes are significantly improving severity score, improving coping behaviour, parents handling their affected children and increasing disease knowledge. A recent multidisciplinary eczema school programme tailored to the adult situation showed also high efficacy.

Eczema workshops Eczema workshops may improve the disease severity of patients with AE. There is also a greater adherence to eczema management (coping behaviour, parent’s handling their affected children) in the eczema school, compared with the standard dermatologist-led clinic.

Nurse-led eczema workshop There is evidence that the benefits of nurse interventions are the reduction in the severity of the condition and the better use of topical therapies. There is a reduction in referrals to general practitioners or dermatologists, disease knowledge and self-management techniques are improving. The relative effectiveness of nurse-led programmes compared to multidisciplinary age-related, structured programmes is unclear.

Structured lay-led self-management education training programmes They lead to a small statistically significant reduction in disease status (pain/itch, disability, fatigue) and a small, statistically significant improvement in depression and psychological well-being but there was no difference in quality of life. There is no evidence that such programmes improve psychological health.

E-health during follow-up of patients with AE E-health intervention follows the initial diagnosis and treatment with face-to-face contact. This is just as effective as usual face-to-face care with regard to quality of life and severity of disease. However, when costs are considered, e-health is likely to result in substantial cost savings. Therefore, e-health is a valuable service for patients with AE.

Forms of educational intervention tools Depending of cultural backgrounds and healthcare systems, a wide variety of tools are used in PE programmes (practical demonstrations sessions as florescent cream advices, written action plans, lectures, question and answer sessions, leaflets, online videos) but there is no evidence that a specific tool is more efficient than another.

Summary of evidence
PE programmes for AE in children and adults are efficient and established already in many countries. The multidisciplinary age-related structured group training educational programmes (eczema school) have the most evidence-based benefit. Eczema workshops lead to an improvement in severity scores, there is greater adherence in eczema management, itch-scratching cognition, and there is additional psychological benefit. Nurse-led programmes result in more effective use of topical therapies. Nurse-led programmes result in an improvement of severity scores. Nurse-led programmes may be sparing doctor’s time. There is some evidence that a direct-access, online model for follow-up dermatologic care is equivalent to classical in-person care for patients with AE. There is no evidence of change in severity scores due to lay-led self-management education programmes, which have weak effect in improvement although the disease knowledge is increasing.

Recommendations
• PE programmes for AE in children and adults are recommended as an adjunct to conventional therapy of AE. (1a, A)

Conclusion and outlook
The complex pathophysiology of AE explains why the therapeutic strategies also comprise multiple aspects and are complex in nature. Although there is a strong genetic preposition, patients with AE must not be desperate. Labeling AE as ‘incurable’ is not correct, since the eczema with its symptoms can very well be treated and may disappear totally. Adequate treatment needs the cooperation of the well-informed patient with the physician and time; educational programmes are extremely helpful.

In the recent past, new medications resulting from immunological research have been licensed for AE. The appearance of biologics specific for immune mediators and receptors is extremely promising and will be available soon for patients in many European countries and the rest of the world.
References

79 Hotze M, Baurecht H, Rodrigue E et al. Increased efficacy of omalizumab in atopic dermatitis patients with wild-type flaggatin status and higher serum levels of phosphatidylycholines. *Allergy* 2014; 69: 132–135.

European guidelines for treatment of atopic eczema - part II

