Search
Search

As technology continues to miniaturize, the demand for nanoscale devices and structures is ever increasing. The challenge of converting the latest ideas and designs into valuable assets only continues to grow, and significant technical and financial barriers need to be overcome for successful prototyping of nanoscale devices.
Standard nanofabrication batch processes involve the combined use of different machines for each pattern layer. These instruments might include a spin coater for resist application, a lithography tool, wet chemistry for resist development, a plasma cleaner, and deposition or etching equipment for pattern transfer. The use of so many distinct tools results in a costly and time-consuming prototyping process. As researchers push nanotechnology towards smaller dimensions, these established procedures and recipes often no longer keep pace with the demands of rapid development.
A reliable nanoprototyping technique would feature dedicated strategies for the execution of pattern designs. This would include the ability to observe the patterning process live and to immediately image the resulting structures with high resolution, offering unique control over the patterning process. This would also provide an immediate feedback loop for the observer, accelerating their development process. This is why DualBeam (focused ion beam – scanning electron microscopy, or FIB-SEM) technology is ideally suited for nanoprototyping applications. The SEM provides high-resolution imaging as the FIB accurately adds or removes material at the nanometer scale via milling or chemical deposition.
Thermo Fisher Scientific offers a smart and efficient way of turning nanoscale designs into reality. Our DualBeam instruments feature unique precision stages and are combined with state-of-the-art software and patterning engines. Together, these produce a robust prototyping workflow that enables you to quickly design, create, and inspect micro- and nanoscale functional prototype devices.
Neuartige Materialien werden in immer kleineren Dimensionen untersucht, um ihre physikalischen und chemischen Eigenschaften bestmöglich zu kontrollieren. Die Elektronenmikroskopie gibt Forschern wichtige Einblicke in eine Vielzahl von Materialeigenschaften auf der Mikro- bis Nanoebene.

Die Entwicklung von Batterien wird durch die Multiskalen-Analyse mit Mikro-CT, REM und TEM, Raman-Spektroskopie, XPS und digitaler 3D-Visualisierung und 3D-Analyse ermöglicht. Erfahren Sie, wie dieser Ansatz die strukturellen und chemischen Informationen liefert, die für den Bau besserer Batterien benötigt werden.

Die effektive Produktion von Metallen erfordert eine präzise Kontrolle von Einschlüssen und Ausscheidungen. Unsere automatisierten Geräte können eine Vielzahl von Aufgaben ausführen, die für die Metallanalyse wichtig sind, einschließlich der Zählung von Nanopartikeln, der chemischen Analyse mittels EDS und der Vorbereitung von TEM-Proben.

Katalysatoren sind für einen Großteil der modernen industriellen Prozesse von entscheidender Bedeutung. Ihre Effizienz hängt von der mikroskopischen Zusammensetzung und Morphologie der katalytischen Partikel ab; EM mit EDS eignet sich ideal für die Untersuchung dieser Eigenschaften.

Materialien haben im Nanobereich grundsätzlich andere Eigenschaften als im Makrobereich. Um diese zu untersuchen, können S/TEM-Geräte mit energiedispersiver Röntgenspektroskopie kombiniert und so Daten mit einer Auflösung im Nanometerbereich und sogar darunter erfasst werden.
To ensure optimal system performance, we provide you access to a world-class network of field service experts, technical support, and certified spare parts.

