Dynabeads™ Rat Anti-Mouse IgM - FAQs

View additional product information for Dynabeads™ Rat Anti-Mouse IgM - FAQs (11039D)

28 product FAQs found

My Dynabeads magnetic beads are not pelleting well with the magnet. Do you have any suggestions for me?

Please review the following possibilities for why your Dynabeads magnetic beads are not pelleting:

- The solution is too viscous.
- The beads have formed aggregates because of protein-protein interaction.

Try these suggestions: - Increase separation time (leave tub on magnet for 2-5 minutes)
- Add DNase I to the lysate (~0.01 mg/mL)
- Increase the Tween 20 concentration to ~0.05% of the binding and/or washing buffer.
- Add up to 20 mM beta-merecaptoethanol to the binding and/or wash buffers.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

I have a long double-stranded DNA fragment I would like to isolate. What product do you recommend?

For biotin-labeled DNA that is less than 1 kb, we recommend you use Dynabeads M270 Streptavidin (Cat. No. 65305) and MyOne C1 magnetic beads (Cat. No. 65001). We recommend our Dynabeads KilobaseBINDER Kit (Cat. No. 60101), which is designed to immobilize long (>1 kb) double-stranded DNA molecules. The KilobaseBINDER reagent consists of M-280 Streptavidin-coupled Dynabeads magnetic beads along with a patented immobilization activator in the binding solution to bind to long, biotinylated DNA molecules for isolation. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/immobilisation-of-long-biotinylated-dna-fragments.html) for more information in regards to long biotinylated DNA fragment isolation.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can I use Dynabeads magnetic beads to isolate single-stranded DNA templates?

Yes, Dynabeads magnetic beads can be used to isolate single-stranded DNA. Streptavidin Dynabeads magnetic beads can be used to target biotinylated DNA fragments, followed by denaturation of the double-stranded DNA and removal of the non-biotinylated strand. The streptavidin-coupled Dynabeads magnetic beads will not inhibit any enzymatic activity. This enables further handling and manipulation of the bead-bound DNA directly on the solid phase. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/preparing-single-stranded-dna-templates.html) for more information in regards to single-stranded DNA capture.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What is the magnetic susceptibility for Dynabeads magnetic beads?

Magnetic susceptibility is a measure of how quickly the beads will migrate to the magnet. This will depend on the iron content and the character of the iron oxide. The magnetic susceptibility given for the Dynabeads magnetic beads is the mass susceptibility, given either as cgs units/g or m^3/kg (the latter being an SI unit). For ferri- and ferromagnetic substances, the magnetic mass susceptibility is dependent upon the magnetic field strength (H), as the magnetization of such substances is not a linear function of H but approaches a saturation value with increasing field. For that reason, the magnetic mass susceptibility of the Dynabeads magnetic beads is determined by a standardized procedure under fixed conditions. The magnetic mass susceptibility given in our catalog is thus the SI unit. Conversion from Gaussian (cgs, emu) units into SI units for magnetic mass susceptibility is achieved by multiplying the Gaussian factor (emu/g or cgs/g) by 4 pi x 10^-3. The resulting unit is also called the rationalized magnetic mass susceptibility, which should be distinguished from the (SI) dimensionless magnetic susceptibility unit. In general, magnetic mass susceptibility is a measure of the force (Fz) influencing an object positioned in a nonhomogenous magnetic field. The magnetic mass susceptibility of the Dynabeads magnetic beads is measured by weighing a sample, and then subjecting the sample to a magnetic field of known strength. The weight (F1) is then measured, and compared to the weight of the sample when the magnetic field is turned off (F0). The susceptibility is then calculated as K x 10^-3 = [(F1-F0) x m x 0.335 x 10^6], where K is the mass susceptibility of the sample of mass m. The susceptibility is then converted to SI units.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

How can I determine coupling efficiency of Dynabeads magnetic beads?

There are different methods to check binding of ligands to the beads, including optical density (OD) measurement, fluorescent labeling, and radioactive labeling.

For OD measurement, you would measure the OD of the ligand before immobilization to the beads and compare it with the ligand concentration that is left in the supernatant after coating. This gives a crude measurement of how much protein has bound to the beads.

Protocol:

1.Set spectrophotometer to the right wavelength. As a blank, use the Coupling Buffer.
2.Measure the absorbance of the Pre-Coupling Solution. A further dilution may be necessary to read the absorbance, depending upon the amount of ligand added.
3.Measure the absorbance of the Post-Coupling Solution. A dilution may be necessary to read the absorbance.
4.Calculate the coupling efficiency, expressed as the % protein uptake, as follows. [(Pre-Coupling Solution x D) - (Post-Coupling Solution x D)] x 100/(Pre-Coupling Solution x D) where D = dilution factor.

For fluorescent labeling, we suggest negatively quantifying the amount of ligand bound by measuring ligand remaining in the coupling supernatant (compared to the original sample), rather than directly measuring the ligands on the beads. Add labeled ligand to the beads, and measure how much ligand is left in the supernatant (not bound to the beads). By comparing this with the total amount added in the first place, you can then calculate how much of the ligand that has been bound to the beads. Keep in mind that the Dynabeads magnetic beads are also autofluorescent, which is why direct measuring of fluorescence of the bead-bound ligands is not recommended, but rather this indirect approach. The label could be, for example, FITC/PE. Some researchers perform a direct approach with success (using a flow cytometer).

Radioactive labeling is the most sensitive method of the three, but it is also the most difficult one. It involves radioactively labeling a portion of the ligand. We use radiolabeled I-125 in tracer amounts and mix it with "cold" ligands in a known ratio before coupling. The absolute quantities for the ligand on the beads should be obtained by measuring the beads in a scintillation (gamma) counter and comparing the cpm with a standard.

Protocol:

1.Take out an appropriate amount of beads and wash the beads in 1 mL of binding buffer.
2.Pipette out desired amount of human IgG in a separate tube.
3.Mix the human IgG with I-125-labeled human IgG (30,000 - 100,000 cpm).
4.Dilute the mixture of human IgG and I-125-labeled human IgG to 100 mL in binding buffer.
5.Incubate for 30 minutes at room temperature and measure the cpm in a scintillation counter.
6.Wash the beads (with coating) four times, and measure cpm again.
The % binding is calculated by using the equation : (cpm after washing/cpm before washing)x100%.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What sizes do you offer for the Dynabeads magnetic beads?

Dynabeads magnetic beads come in three sizes: 4.5 µm (M-450), 2.8 µm (M-270/M-280), and 1 µm (MyOne beads). The largest of the Dynabeads magnetic beads is ideal for big targets like cells. The 2.8 µm beads are recommended for proteomics and molecular applications. The smallest of the beads, 1 µm, are ideal for automated handling.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can Dynabeads magnetic beads be sonicated?

In general, short sonication is a good way to reduce aggregation of the beads and ensure optimal homogenous conditions at the time of ligand addition when coating the beads. When target is bound to the beads, more care is needed, as the binding might break. The streptavidin beads themselves should tolerate sonication. We have not tested sonication for long periods, but 5 minutes is fine. We do not have information about the streptavidin-biotin interaction being broken by such treatment.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can Dynabeads magnetic beads be sterilized?

If desired, the uncoated epoxy or tosylactivated beads can be sterilized by washing with 70% ethanol. Coated beads cannot be sterilized.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What are Dynabeads magnetic beads?

Dynabeads magnetic beads are uniform, non-porous, superparamagnetic, monodispersed and highly cross-linked polystyrene microspheres consisting of an even dispersion of magnetic material throughout the bead. The magnetic material within the Dynabeads magnetic beads consists of a mixture of maghemite (gamma-Fe2O3) and magnetite (Fe3O4). The iron content (Fe) of the beads is 12% by weight in Dynabeads magnetic beads M-280 and 20% by weight in Dynabeads magnetic beads M-450. The Dynabeads magnetic beads are coated with a thin polystyrene shell which encases the magnetic material, and prevents any leakage from the beads or trapping of ligands in the bead interior. The shell also protects the target from exposure to iron while providing a defined surface area for the adsorption or coupling of various molecules.

Uniformity of bead size and shape provides consistent physical and chemical properties. These uniform physical characteristics lead to high-quality, reproducible results.

The Dynabeads magnetic beads are available in three different sizes: 4.5 µm (M-450 beads), 2.8 µm (M-270/M-280 beads) and 1 µm (MyOne beads).

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

How can I isolate cells using secondary-coated Dynabeads magnetic beads?

The secondary-coated Dynabeads magnetic beads can be coupled to a primary antibody by a direct or an indirect approach.
Direct approach: The Dynabeads magnetic beads are first coupled with your primary antibody and then used for isolating your target cell type.
Indirect approach: The cells are first incubated with your primary antibody(ies). The Dynabeads magnetic beads are then added to the antibody-coated target cells.

Secondary-coated Dynabeads magnetic beads can be used in several cell isolation approaches:
Cell depletion--using an antibody to target the unwanted cell type and a secondary-coated Dynabeads magnetic beads product.
Negative cell isolation--using a cocktail of antibodies to target all unwanted cell types and a secondary-coated Dynabeads magnetic beads product (using the indirect approach).
Positive cell isolation without detachment--using an antibody to target the wanted cell type and a secondary-coated Dynabeads magnetic beads product.
Positive cell isolation with detachment--using an antibody to target the wanted cell type and a CELLection Dynabeads magnetic beads product.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

If Thermo Fisher Scientific does not have a primary-coated Dynabeads magnetic beads product for isolating my target cell type, which alternative Dynabead magnetic beads product can I use instead?

You may use one of our secondary-coated, surface-activated, or streptavidin-coated Dynabeads magnetic beads, and coat it with a primary antibody to target your cell type.

The Dynabeads magnetic beads product you choose will depend on the primary antibody available for cell targeting and the downstream application for the isolated cells:
-For primary antibodies made in mouse, use the CELLection magnetic beads Pan Mouse IgG Kit, Dynabeads magnetic beads Goat Anti-Mouse IgG, Dynabeads magnetic beads Pan Mouse IgG, Dynabeads magnetic beads Rat Anti-Mouse IgM, Dynabeads magnetic beads Rat Anti-Mouse IgM, or Dynabeads magnetic beads Sheep-Anti Mouse IgG

-For primary antibodies made in rat, use the Dynabeads magnetic beads Sheep Anti-Rat IgG

-For primary antibodies made in rabbit, use the Dynabeads magnetic beads M-280 Sheep Anti-Rabbit IgG

-For primary antibodies made in any species, use the CELLection magnetic beads Biotin Binder Kit, Dynabeads magnetic beads Biotin Binder, Dynabeads magnetic beads FlowComp Flexi, Dynabeads magnetic beads M-450 Epoxy, or Dynabeads magnetic beads M-450 Tosylactivated

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Can a cocktail of primary antibodies be added to a cell suspension in order to pull out several target cell populations simultaneously, using one secondary-coated Dynabeads magnetic beads product?

Yes, a cocktail of primary antibodies can be added to a cell suspension in order to pull out several target cell populations with one secondary-coated Dynabeads magnetic beads product.
The Dynabeads magnetic beads Pan Mouse IgG (110.41; 110.42) works very well with a cocktail of mouse IgGs for the simultaneous capture of multiple cell types. it is recommended that you use an indirect technique with antibody cocktails (add all Ab to cells, wash off excess Ab, then add beads to capture Ab-coated cells).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

When do I use the direct or indirect isolation techniques?

The indirect technique is chosen when the antigen targeted by the primary antibody is expressed in low density on the target cell surface. This is due to the fact that free antibodies will find their target antigen more easily than antibodies linked to the Dynabeads magnetic beads. Also when using the indirect technique, an excess of free antibody can be added to the system, allowing ample opportunity for monoclonals to find the target antigen. Finally, an indirect technique can be useful when a cocktail of monoclonal antibodies is used to deplete unwanted cells during negative isolation of a cell type. This is because antibodies against all unwanted cell types can be added at once to the starting cell population, provided the antibodies are from one species. The antibody-coated cells can then be targeted with secondary-coated Dynabeads magnetic beads. The direct technique is chosen when a limiting amount of monoclonal antibody is needed for targeting the cells of interest during positive isolation or depletion (e.g., when the target antigen is present at high density). It can also help when the possibility of interaction from the secondary antibody needs to be avoided, or if a stock preparation of primary coated Dynabeads magnetic beads is desired. Additionally the direct technique can be used when you do not want to cover all antigen sites with antibody (e.g., when you want to analyze the isolated cells by flow cytometry).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What are direct and indirect isolation techniques?

When a secondary-coated Dynabeads magnetic beads product is used for negative isolation or depletion of cells you can choose between the following techniques.

Direct technique
-Add primary IgG antibody to the secondary-coated Dynabeads magnetic beads with specificity to the species of your primary IgG antibody
-Add the resulting primary coated Dynabeads magnetic beads to cells for capture and separation

Benefits:
-You can make up a stock of beads
-Use less primary antibody
-Save time, fewer steps and is easier to optimize than the indirect procedure
-Lower background, additional steps increase the chance of nonspecific signal
-Lower cost, since direct procedures require much lower amounts of tag specific antibodies than indirect procedures

OR

Indirect technique
-Add primary IgG antibody to the cells
-Wash cells to remove excess, unbound antibody
-Add secondary-coated Dynabeads magnetic beads with specificity to the species of your primary IgG antibody to capture primary antibody coated cells

Benefits:
-You can use a cocktail of antibodies to coat different cell types i.e., a negative isolation approach
-Can be used when target antigen expression is low for more efficient binding of antibody to cells.

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.

What is the definition of superparamagnetic, and what does this mean for my cell isolation application with Dynabeads magnetic beads?

Superparamagnetic means that the Dynabeads magnetic beads exhibit magnetic properties when placed within a magnetic field, but have no residual magnetism when removed from the magnetic field.

This means that your targeted cells, proteins, or nucleic acids are only subjected to magnetic forces during the time the beads are on the magnet. The beads do not aggregate, but remain evenly dispersed in suspension.

Find additional tips, troubleshooting help, and resources within our Dynabeads Cell Isolation and Expansion Support Center.

Are the antibodies on your Dynabeads magnetic beads for cell isolation/activation/expansion covalently bound to the beads?

Yes. The antibodies are covalently bound and should be very stable in your applications.

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.

What is the average shelf life of Dynabeads magnetic beads?

Depending on the antibody coated on the Dynabeads magnetic beads, the shelf life can vary from 24-36 months.
Some kits may have 18 months shelf life depending on other components supplied in the kit. The kits are guaranteed for 6 months from when you receive them.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

What do the designations M-280, M-270, and MyOne mean on Dynabeads magnetic beads?

The M stands for magnetic. M-280 refers to hydrophobic 2.8 micron beads, while M-270 refers to hydrophilic 2.8 micron beads. MyOne refers to 1 micron beads.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

What is the detection limit when using Dynabeads magnetic beads for immunoprecipitation (IP)?

Answering this question is not straightforward. It will depend on the detection method. When using HRP (horseradish peroxidase)-based detection system or radioactivity in combination with a good antibody, very little target is required. More target is required when using an AP (alkaline phosphatase)-based detection system. When a sensitive detection system is used, detection will most likely be in the nanogram range. In some cases, pictograms of target can be detected.

Find additional tips, troubleshooting help, and resources within our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

What is the elution volume when using Dynabeads magnetic beads for immunoprecipitation (IP)?

Within practical limits, the elution volume can be scaled up or down to suit your experiment. However, volumes less than 10 µL become more difficult to work with. In addition, the amount of target is important. If you have a lot of beads with a lot of bound target in a small elution volume, your elution may not be very efficient. Typically, 15-100 µL of beads may be eluted in 30 µL. For efficient recovery of the antigen and/or binding partners, the elution volume should at minimum equal the volume of the beads.

Find additional tips, troubleshooting help, and resources within our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

How can I quantify the amount of antibody bound to Dynabeads magnetic beads?

There are several methods to quantify the amount of antibody bound to the beads. The crudest method is to measure the concentration of antibody in the coupling reaction before and after antibody attachment. Either fluorescence measurements or absorbance at 280 nm can be used. Alternatively, you could measure the amount of antibody bound to the beads by fluorescence, chemiluminescence, or radiolabeling detection methods.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

How long should I incubate my antibody with the lysates?

Incubation time will depend on the immunogenicity of the primary antibody and its binding affinity with the specific antigens. For a good primary antibody, 30-40 minutes incubation should work well. If you are working with a poor antibody or a very low-abundance protein, you could try to increase binding by incubating overnight. However, this also increases the chance of background protein binding.

Find additional tips, troubleshooting help, and resources within our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

When should I covalently bind the antibody to the Dynabeads surface?

If the target protein has the same molecular weight as the heavy or light chain antibody, we would recommend covalently binding the antibody to the bead surface. This can be done by either crosslinking the antibody to the Dynabeads Protein A or G magnetic beads, or secondary coated beads, or by using one of the surface-activated Dynabeads magnetic beads.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

What are the general advantages of using Dynabeads magnetic beads for protein isolation?

Using Dynabeads magnetic beads for protein isolation provides several advantages:

-Rapid binding kinetics: since the number of beads per volume for Dynabeads is approximately 1,000 times higher than for the same volume of a Sepharose slurry, the probability for Dynabeads magnetic beads to hit the target is far greater.

-Incubation time: due to the rapid binding kinetics, the protocol is usually very short.
-Low background: due to the rapid binding kinetics and the short incubation time, the background is also very low.
-Trapping of impurities: the beads offer no internal volume for binding or trapping of impurities.
-Low antibody consumption: this is because Dynabeads magnetic beads are nonporous, uniform superparamagnetic, monodispersed, highly crosslinked polystyrene microspheres consisting of an even dispersion of magnetic material throughout the bead. The beads are coated with a thin layer of a highly crosslinked polystyrene shell that encases the magnetic material and prevents any leakage from the beads or trapping of ligands in the bead interior. The outer layer also provides a defined surface area for the adsorption or coupling of various molecules such as antibodies. Uniformity of bead size and shape provide consistent physical and chemical properties. These uniform physical characteristics lead to high-quality, reproducible results.
-Reproducibility: due to easier practical handling, such as pipetting. No centrifugation steps or preclearing are required.

Find additional tips, troubleshooting help, and resources within ourProtein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

Are Dynabeads magnetic beads compatible with dithionite, DTT, and EDTA?

No. Not only is dithionite a reducing agent, but the strong affinity of the dithionite ion for bivalent and trivalent metal cations (M2+, M3+) allows it to enhance the solubility of iron, making it a chelating agent. As a result, the iron in the Dynabeads magnetic beads is reduced and pulled out when they are exposed to dithionite. The same is observed if Dynabeads magnetic beads are exposed to DTT and EDTA. With EDTA, we highly recommend checking the minimal amount of EDTA that your specific molecules would tolerate for binding to the Dynabeads, and if it will affect your specific application. For some applications, low concentrations of EDTA can be tolerated by Dynabeads. On the other hand, using 10 mM EDTA with heating affects the binding of biotin molecules to Dynabeads streptavidin.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

Are Dynabeads magnetic beads compatible with Urea?

Yes, they are compatible with 6-8 M Urea when used during post-coupling steps.

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.

Are Dynabeads magnetic beads compatible with centrifugation?

Dynabeads magnetic beads, being magnetic in nature are really not designed to be centrifuged. That being said, the beads themselves are compact, as the pores in the polymer matrix are filled with magnetic material and coated with a final outer polymer shell that will further add to the rigidity of the beads. Hence, pressure should theoretically not be a problem for the beads themselves, but the force exerted by the beads on surrounding cells in the pellet may be detrimental to the cells.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

What are the benefits of using magnetic beads in immunoprecipitation (IP) experiments?

Magnetic beads, unlike agarose beads, are solid and spherical, and antibody binding is limited to the surface of each bead. While magnetic beads do not have the advantage of a porous center to increase the binding capacity, they are significantly smaller than agarose beads (1 to 4 µm), which collectively gives them adequate surface area-to-volume ratios for optimum antibody binding.

High-power magnets are used to localize magnetic beads to the side of the incubation tube and out of the way to enable cell lysate aspiration without the risk of also aspirating immune complexes bound to the beads. Magnetic separation avoids centrifugation, which can break weak antibody-antigen binding and cause loss of target protein.

However, an issue with the use of magnetic beads is that bead size variations may prevent all beads from localizing to the magnet. Additionally, while immunoprecipitation using agarose beads only requires standard laboratory equipment, the use of magnetic beads for immunoprecipitation applications requires high-power magnetic equipment that can be cost-prohibitive. Read more about our Magnetic Immunoprecipitation Products (https://www.thermofisher.com/us/en/home/life-science/protein-biology/protein-assays-analysis/immunoprecipitation.html#products).

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.