Células competentes Library Efficiency™ DH5α
Células competentes Library Efficiency™ DH5α
Invitrogen™

Células competentes Library Efficiency™ DH5α

Las células competentes Library Efficiency DH5α constituyen una cepa versátil de células competentes químicamente que demuestran una eficacia de transformaciónMás información
Have Questions?
Número de catálogoCantidad
182630125 x 200 μl
Número de catálogo 18263012
Precio (MXN)
-
Cantidad:
5 x 200 μl
Las células competentes Library Efficiency DH5α constituyen una cepa versátil de células competentes químicamente que demuestran una eficacia de transformación de > 1 x 108 cfu/µg de ADN plasmídico. Las células competentes Library Efficiency DH5α son ideales para construcciones de clonación difíciles o cualquier aplicación que utilice cantidades limitadas de ADN. Características de estas células:

• Admiten la detección de color azul/blanco mediante una complementación α en placas con X-Gal o Bluo-Gal
• Mantienen el ADN plasmídico con eventos de recombinación mínimos
• Ofrecen preparaciones de plásmidos de alto rendimiento para aplicaciones posteriores
• Los vectores de clonación M13mp se pueden propagar sobre un lecho de DH5α-FT, DH5αF', DH5αF'IQ, JM101 o JM107 para permitir la formación de placas

Ideal para proyectos de clonación difíciles
Se recomiendan las células competentes Library Efficiency DH5α para la clonación rutinaria de genes en plásmidos de gran tamaño y son adecuadas para construcciones de clonación difíciles, como ligaciones de extremo romo. Las células competentes Library Efficiency DH5α tienen una eficacia de transformación de gama media (> 1 x 108 cfu/gµ de ADN de control por 100 µl de reacción). La cepa también tiene el genotipo Φ80lacZΔM15, de manera que permite la detección de color azul/blanco en placas con X-Gal o Bluo-Gal. Por último, la mutación recA1 ayuda a reducir la tasa de recombinación, al tiempo que propaga ADN plasmídico, y la mutación endA1 hace que las células DH5α se conviertan en una excelente elección para amplificar el ADN plasmídico para su posterior extracción y purificación.

Genotipo: F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ-
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Resistencia bacteriana a los antibióticosNo
Tramado azul/blanco
Clonación de ADN metiladoNo
Clonación de ADN inestableNo es adecuado para clonar ADN inestable
Contiene el episoma F'Carece de episoma F'
Compatibilidad de alto rendimientoNo compatible con alto rendimiento (manual)
Mejora la calidad de los plásmidos
Preparación de ADN no metiladoNo es adecuado para preparar ADN no metilado
Línea de productosDH5a, Library Efficiency
Tipo de productoCélula competente
Cantidad5 x 200 μl
Reduce la recombinación
Condiciones de envíoHielo seco
Resistente al fago T1 (tonA)No
Nivel de eficiencia de transformaciónEficacia media (10^8-10^9 ufc⁄µ g)
FormatoTubo
EspecieE. coli
Unit SizeEach
Contenido y almacenamiento
Contiene:
• Células competentes Library Efficiency DH5α: 5 viales, 200 µl cada uno (total de 1 ml)
• ADN pUC19 (10 pg/ul): 1 vial, 50 µl
• Medio S.O.C.: 2 frascos, 6 ml cada uno

Almacenar las células competentes a -80 °C. Almacene pUC19 DNA a -20 °C. Almacenar el medio SOC a 4 ºC o a temperatura ambiente.

Preguntas frecuentes

I am trying to clone an insert that is supposedly pretty toxic. I used DH5? and TOP10 cells for the transformation and got no colonies on the plate. Do you have any suggestions for me?

If the insert is potentially toxic to the host cells, here are some suggestions that you can try:

- After transforming TOP10 or DH5? cells, incubate at 25-30°C instead of 37°C. This will slow down the growth and will increase the chances of cloning a potentially toxic insert.
- Try using TOP10F' cells for the transformation, but do not add IPTG to the plates. These cells carry the lacIq repressor that represses expression from the lac promoter and so allows cloning of toxic genes. Keep in mind that in the absence of IPTG, blue-white screening cannot be performed.
- Try using Stbl2 cells for the transformation.

How do you recommend that I prepare my DNA for successful electroporation of E. coli?

For best results, DNA used in electroporation must have a very low ionic strength and a high resistance. A high-salt DNA sample may be purified by either ethanol precipitation or dialysis.

The following suggested protocols are for ligation reactions of 20ul. The volumes may be adjusted to suit the amount being prepared.

Purifying DNA by Precipitation: Add 5 to 10 ug of tRNA to a 20ul ligation reaction. Adjust the solution to 2.5 M in ammonium acetate using a 7.5 M ammonium acetate stock solution. Mix well. Add two volumes of 100 % ethanol. Centrifuge at 12,000 x g for 15 min at 4C. Remove the supernatant with a micropipet. Wash the pellet with 60ul of 70% ethanol. Centrifuge at 12,000 x g for 15 min at room temperature. Remove the supernatant with a micropipet. Air dry the pellet. Resuspend the DNA in 0.5X TE buffer [5 mM Tris-HCl, 0.5 mM EDTA (pH 7.5)] to a concentration of 10 ng/ul of DNA. Use 1 ul per transformation of 20 ul of cell suspension.

Purifying DNA by Microdialysis: Float a Millipore filter, type VS 0.025 um, on a pool of 0.5X TE buffer (or 10% glycerol) in a small plastic container. Place 20ul of the DNA solution as a drop on top of the filter. Incubate at room temperature for several hours. Withdraw the DNA drop from the filter and place it in a polypropylene microcentrifuge tube. Use 1ul of this DNA for each electrotransformation reaction.

You offer competent cells in Subcloning Efficiency, Library Efficiency and MAX Efficiency. How do these differ?

There are a few exceptions, but in general the difference is in guaranteed transformation efficiency as follows:

Subcloning Efficiency cells are guaranteed to produce at least 1.0 x 10E6 transformants per µg of transformed pUC19 or pUC18 supercoiled plasmid
Library Efficiency cells are guaranteed to produce at least 1.0 x 10E8 transformants per µg pUC19 or pUC18 DNA
MAX Efficiency cells are guaranteed to produce at least 1.0 x 10E9 transformants per µg pUC19 or pUC18 DNA

Do any Invitrogen competent cells contain DMSO in the freezing medium?

Yes, several of our competent cells products are frozen with DMSO. The presence of DMSO (dimethylsulfoxide) will generally be indicated in the MSDS files if you have a question about a particular product, but here is a list of commonly used products that are known to have DMSO in the freezing buffer:

One Shot OmniMAX 2 T1 Phage Resistant Cells, Cat. No. C8540-03

One Shot INV?F' Chemically Competent Cells, Cat. No. C2020-03 and C2020-06

One Shot MAX Efficiency DH5?-T1 Chemically Competent Cells, Cat. No. 12297-016

MAX Efficiency DH5?-T1 Phage Resistant Cells, Cat. No. 12034-013

MAX Efficiency DH5? Chemically Competent Cells, Cat. No. 18258-012

Library Efficiency DH5? Chemically Competent Cells, Cat. No. 18263-012

MAX Efficiency DH5? F'IQ Cells, Cat. No. 18288-019

MAX Efficiency Stbl2Chemically Competent Cells, Cat. No. 10268-019

Is S.O.C. medium absolutely required when recovering competent bacterial cells during transformation?

Many media can be used to grow transformed cells, including standard LB, SOB or TB broths. However, S.O.C. is the optimal choice for recovery of the cells before plating. The nutrient-rich formula with added glucose is often important for obtaining maximum transformation efficiencies.

Citations & References (4)

Citations & References
Abstract
Changes in the mechanism of DNA integration in vitro induced by base substitutions in the HIV-1 U5 and U3 terminal sequences.
Authors: Brin Elena; Leis Jonathan;
Journal:J Biol Chem
PubMed ID:11788585
'We have reconstituted concerted human immunodeficiency virus type 1 (HIV-1) integration with specially designed mini-donor DNA, a supercoiled plasmid acceptor, purified bacterial-derived HIV-1 integrase (IN), and host HMG-I(Y) protein (Hindmarsh, P., Ridky, T., Reeves, R., Andrake, M., Skalka, A. M., and Leis, J. (1999) J. Virol. 73, 2994-3003). Integration in ... More
Identification and characterization of two cation binding sites in the integrin beta 3 subunit.
Authors: Cierniewska-Cieslak Aleksandra; Cierniewski Czeslaw S; Blecka Kamila; Papierak Malgorzata; Michalec Lidia; Zhang Li; Haas Thomas A; Plow Edward F;
Journal:J Biol Chem
PubMed ID:11796735
'The midsegment of the beta(3) subunit has been implicated in the ligand and cation binding functions of the beta(3) integrins. This region may contain a metal ion-dependent adhesion site (MIDAS) and fold into an I domain-like structure. Two recombinant fragments, beta(3)-(95-373) and beta(3)-(95-301), were expressed and found to bind fibrinogen. ... More
Requirement for either a host- or pectin-induced pectate lyase for infection of pisum sativum by nectriahematococca.
Authors:Rogers LM, Kim YK, Guo W, Gonzalez-Candelas L, Li D, Kolattukudy PE
Journal:Proc Natl Acad Sci U S A
PubMed ID:10931947
Fungal pathogens usually have multiple genes that encode extracellular hydrolytic enzymes that may degrade the physical barriers in their hosts during the invasion process. Nectria hematococca, a plant pathogen, has two inducible pectate lyase (PL) genes (pel) encoding PL that can help degrade the carbohydrate barrier in the host. pelA ... More
Molecular determinants of high affinity binding to group III metabotropic glutamate receptors.
Authors: Rosemond Erica; Peltekova Vanya; Naples Mark; Thøgersen Henning; Hampson David R;
Journal:J Biol Chem
PubMed ID:11744707
The amino-terminal domain containing the ligand binding site of the G protein-coupled metabotropic glutamate receptors (mGluRs) consists of two lobes that close upon agonist binding. In this study, we explored the ligand binding pocket of the Group III mGluR4 receptor subtype using site-directed mutagenesis and radioligand binding. The selection of ... More