CTS™ (Cell Therapy Systems) Dynabeads™ CD3/CD28 - FAQs

View additional product information for CTS™ (Cell Therapy Systems) Dynabeads™ CD3/CD28 - FAQs (40203D)

34 product FAQs found

My Dynabeads magnetic beads are not pelleting well with the magnet. Do you have any suggestions for me?

Please review the following possibilities for why your Dynabeads magnetic beads are not pelleting:

- The solution is too viscous.
- The beads have formed aggregates because of protein-protein interaction.

Try these suggestions: - Increase separation time (leave tub on magnet for 2-5 minutes)
- Add DNase I to the lysate (~0.01 mg/mL)
- Increase the Tween 20 concentration to ~0.05% of the binding and/or washing buffer.
- Add up to 20 mM beta-merecaptoethanol to the binding and/or wash buffers.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

I have a long double-stranded DNA fragment I would like to isolate. What product do you recommend?

For biotin-labeled DNA that is less than 1 kb, we recommend you use Dynabeads M270 Streptavidin (Cat. No. 65305) and MyOne C1 magnetic beads (Cat. No. 65001). We recommend our Dynabeads KilobaseBINDER Kit (Cat. No. 60101), which is designed to immobilize long (>1 kb) double-stranded DNA molecules. The KilobaseBINDER reagent consists of M-280 Streptavidin-coupled Dynabeads magnetic beads along with a patented immobilization activator in the binding solution to bind to long, biotinylated DNA molecules for isolation. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/immobilisation-of-long-biotinylated-dna-fragments.html) for more information in regards to long biotinylated DNA fragment isolation.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can I use Dynabeads magnetic beads to isolate single-stranded DNA templates?

Yes, Dynabeads magnetic beads can be used to isolate single-stranded DNA. Streptavidin Dynabeads magnetic beads can be used to target biotinylated DNA fragments, followed by denaturation of the double-stranded DNA and removal of the non-biotinylated strand. The streptavidin-coupled Dynabeads magnetic beads will not inhibit any enzymatic activity. This enables further handling and manipulation of the bead-bound DNA directly on the solid phase. Please see the following link (https://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/napamisc/capture-of-biotinylated-targets/preparing-single-stranded-dna-templates.html) for more information in regards to single-stranded DNA capture.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What is the magnetic susceptibility for Dynabeads magnetic beads?

Magnetic susceptibility is a measure of how quickly the beads will migrate to the magnet. This will depend on the iron content and the character of the iron oxide. The magnetic susceptibility given for the Dynabeads magnetic beads is the mass susceptibility, given either as cgs units/g or m^3/kg (the latter being an SI unit). For ferri- and ferromagnetic substances, the magnetic mass susceptibility is dependent upon the magnetic field strength (H), as the magnetization of such substances is not a linear function of H but approaches a saturation value with increasing field. For that reason, the magnetic mass susceptibility of the Dynabeads magnetic beads is determined by a standardized procedure under fixed conditions. The magnetic mass susceptibility given in our catalog is thus the SI unit. Conversion from Gaussian (cgs, emu) units into SI units for magnetic mass susceptibility is achieved by multiplying the Gaussian factor (emu/g or cgs/g) by 4 pi x 10^-3. The resulting unit is also called the rationalized magnetic mass susceptibility, which should be distinguished from the (SI) dimensionless magnetic susceptibility unit. In general, magnetic mass susceptibility is a measure of the force (Fz) influencing an object positioned in a nonhomogenous magnetic field. The magnetic mass susceptibility of the Dynabeads magnetic beads is measured by weighing a sample, and then subjecting the sample to a magnetic field of known strength. The weight (F1) is then measured, and compared to the weight of the sample when the magnetic field is turned off (F0). The susceptibility is then calculated as K x 10^-3 = [(F1-F0) x m x 0.335 x 10^6], where K is the mass susceptibility of the sample of mass m. The susceptibility is then converted to SI units.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

How can I determine coupling efficiency of Dynabeads magnetic beads?

There are different methods to check binding of ligands to the beads, including optical density (OD) measurement, fluorescent labeling, and radioactive labeling.

For OD measurement, you would measure the OD of the ligand before immobilization to the beads and compare it with the ligand concentration that is left in the supernatant after coating. This gives a crude measurement of how much protein has bound to the beads.

Protocol:

1.Set spectrophotometer to the right wavelength. As a blank, use the Coupling Buffer.
2.Measure the absorbance of the Pre-Coupling Solution. A further dilution may be necessary to read the absorbance, depending upon the amount of ligand added.
3.Measure the absorbance of the Post-Coupling Solution. A dilution may be necessary to read the absorbance.
4.Calculate the coupling efficiency, expressed as the % protein uptake, as follows. [(Pre-Coupling Solution x D) - (Post-Coupling Solution x D)] x 100/(Pre-Coupling Solution x D) where D = dilution factor.

For fluorescent labeling, we suggest negatively quantifying the amount of ligand bound by measuring ligand remaining in the coupling supernatant (compared to the original sample), rather than directly measuring the ligands on the beads. Add labeled ligand to the beads, and measure how much ligand is left in the supernatant (not bound to the beads). By comparing this with the total amount added in the first place, you can then calculate how much of the ligand that has been bound to the beads. Keep in mind that the Dynabeads magnetic beads are also autofluorescent, which is why direct measuring of fluorescence of the bead-bound ligands is not recommended, but rather this indirect approach. The label could be, for example, FITC/PE. Some researchers perform a direct approach with success (using a flow cytometer).

Radioactive labeling is the most sensitive method of the three, but it is also the most difficult one. It involves radioactively labeling a portion of the ligand. We use radiolabeled I-125 in tracer amounts and mix it with "cold" ligands in a known ratio before coupling. The absolute quantities for the ligand on the beads should be obtained by measuring the beads in a scintillation (gamma) counter and comparing the cpm with a standard.

Protocol:

1.Take out an appropriate amount of beads and wash the beads in 1 mL of binding buffer.
2.Pipette out desired amount of human IgG in a separate tube.
3.Mix the human IgG with I-125-labeled human IgG (30,000 - 100,000 cpm).
4.Dilute the mixture of human IgG and I-125-labeled human IgG to 100 mL in binding buffer.
5.Incubate for 30 minutes at room temperature and measure the cpm in a scintillation counter.
6.Wash the beads (with coating) four times, and measure cpm again.
The % binding is calculated by using the equation : (cpm after washing/cpm before washing)x100%.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What sizes do you offer for the Dynabeads magnetic beads?

Dynabeads magnetic beads come in three sizes: 4.5 µm (M-450), 2.8 µm (M-270/M-280), and 1 µm (MyOne beads). The largest of the Dynabeads magnetic beads is ideal for big targets like cells. The 2.8 µm beads are recommended for proteomics and molecular applications. The smallest of the beads, 1 µm, are ideal for automated handling.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can Dynabeads magnetic beads be sonicated?

In general, short sonication is a good way to reduce aggregation of the beads and ensure optimal homogenous conditions at the time of ligand addition when coating the beads. When target is bound to the beads, more care is needed, as the binding might break. The streptavidin beads themselves should tolerate sonication. We have not tested sonication for long periods, but 5 minutes is fine. We do not have information about the streptavidin-biotin interaction being broken by such treatment.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

Can Dynabeads magnetic beads be sterilized?

If desired, the uncoated epoxy or tosylactivated beads can be sterilized by washing with 70% ethanol. Coated beads cannot be sterilized.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center.

What are Dynabeads magnetic beads?

Dynabeads magnetic beads are uniform, non-porous, superparamagnetic, monodispersed and highly cross-linked polystyrene microspheres consisting of an even dispersion of magnetic material throughout the bead. The magnetic material within the Dynabeads magnetic beads consists of a mixture of maghemite (gamma-Fe2O3) and magnetite (Fe3O4). The iron content (Fe) of the beads is 12% by weight in Dynabeads magnetic beads M-280 and 20% by weight in Dynabeads magnetic beads M-450. The Dynabeads magnetic beads are coated with a thin polystyrene shell which encases the magnetic material, and prevents any leakage from the beads or trapping of ligands in the bead interior. The shell also protects the target from exposure to iron while providing a defined surface area for the adsorption or coupling of various molecules.

Uniformity of bead size and shape provides consistent physical and chemical properties. These uniform physical characteristics lead to high-quality, reproducible results.

The Dynabeads magnetic beads are available in three different sizes: 4.5 µm (M-450 beads), 2.8 µm (M-270/M-280 beads) and 1 µm (MyOne beads).

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

When isolating cells with Dynabeads magnetic beads, what is more important: bead-to-target cell ratio or the concentration of beads in the bead/cell mixture?

Both bead-to-target cell ratio and the concentration of beads in the bead/cell mixture are important and should be considered. For example, when using the Dynabeads magnetic beads M-450 CD4 positive isolation or depletion kit, a 4:1 bead-to-target cell ratio should be maintained. To capture 95% of target cells for molecular applications, the bead concentration must always be 1 x 10e7 beads per milliliter of sample. To deplete 99% CD4 cells from the starting sample, the bead concentration must always be 2 x 10e7 beads per milliliter of sample. Please consult the package insert for recommended bead concentrations of each product.

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.

What is the definition of superparamagnetic, and what does this mean for my cell isolation application with Dynabeads magnetic beads?

Superparamagnetic means that the Dynabeads magnetic beads exhibit magnetic properties when placed within a magnetic field, but have no residual magnetism when removed from the magnetic field.

This means that your targeted cells, proteins, or nucleic acids are only subjected to magnetic forces during the time the beads are on the magnet. The beads do not aggregate, but remain evenly dispersed in suspension.

Find additional tips, troubleshooting help, and resources within our Dynabeads Cell Isolation and Expansion Support Center.

Are the antibodies on your Dynabeads magnetic beads for cell isolation/activation/expansion covalently bound to the beads?

Yes. The antibodies are covalently bound and should be very stable in your applications.

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.

What is the average shelf life of Dynabeads magnetic beads?

Depending on the antibody coated on the Dynabeads magnetic beads, the shelf life can vary from 24-36 months.
Some kits may have 18 months shelf life depending on other components supplied in the kit. The kits are guaranteed for 6 months from when you receive them.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

What is CTS?

The Gibco Cell Therapy Systems (CTS) portfolio of cell and gene therapy products are GMP manufactured, safety tested, and backed by regulatory documentation to support your transition from discovery through clinical and commercial manufacturing. Through our CTS solutions, we are committed to helping customers streamline therapeutic development, minimize risk, and ease the burden on their quality systems. Learn more here.

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

As CTS Detachable Dynabeads CD3/CD28 (Cat. No. A56996) and CTS Dynabeads CD3/CD28 (Cat. No. 40203D) bind to both CD3 and CD28 markers, does that mean that CD3 positive CD28 negative cell subsets are excluded from the positive fraction?

Yes, CTS Detachable Dynabeads CD3/CD28 (Cat. No. A56996) and CTS Dynabeads CD3/CD28 (Cat. No. 40203D) preferentially isolate CD3+ CD28+ double-positive T cells, which are demonstrated to contain the clinically relevant subset of T cells (i.e., CD27 positive, PD-1 negative, CD8 positive CAR T cells).

Also note that CTS Dynabeads is the only isolation technology on the market that excludes exhausted T cells from the manufacturing of the T cell drugs. Please see this reference from University of Pennsylvania & Novartis that used CTS Dynabeads CD3/CD28 in a clinical study of patients with Chronic Lymphocytic Leukemia (CLL): https://pubmed.ncbi.nlm.nih.gov/29713085/

Find additional tips, troubleshooting help, and resources within our Dynabeads Cell Isolation and Expansion Support Center.

Are there potential risks to patient safety when using CTS Dynabeads or CTS Detachable Dynabeads?

Unlike magnetic beads from our competitors, CTS Dynabeads are not phagocytosed by T cells or incorporated into patients. CTS Dynabeads are inert to T cell phagocytosis and can therefore be removed (using the CTS DynaCellect Magnetic Separation System, Cat. No. A55867) before the final drug is injected into the patient.

There is also no evidence that CTS Dynabeads activate T cells non-specifically. Adding Dynabeads without antibodies, for example, to cell suspensions does not upregulate activation markers nor induces expansion.

Find additional tips, troubleshooting help, and resources within our Dynabeads Cell Isolation and Expansion Support Center.

Are CTS Dynabeads and CTS Detachable Dynabeads for clinical trial and commercial manufacturing use?

Yes, CTS Dynabeads and CTS Detachable Dynabeads are GMP-grade and CTS-branded, which means that they are eligible for use in process development, clinical trials, and commercial manufacturing.

Thermo Fisher Scientific’s Cell Therapy Systems (CTS) translates to cGMP manufacturing, testing, and traceability documentation (such as Drug Master Files and Regulatory Support Files) for customer filing needs, and a proven track record of use in many clinical trials and commercialized drugs on the market.

The CTS Dynabeads portfolio, specifically, has been actively used in over 200 clinical trials in 2023 as well as in a number of FDA-approved drugs for commercial use.

Find additional tips, troubleshooting help, and resources within our Dynabeads Cell Isolation and Expansion Support Center.

Do the CTS Dynabeads CD3/CD28 (Cat. No. 40203D) and CTS Dynabeads Treg Xpander (Cat. No. 46000D) contain sodium azide?

No, there is no sodium azide in either of CTS Dynabeads CD3/CD28 (Cat. No. 40203D) or CTS Dynabeads Treg Xpander (Cat. No. 46000D).

Are Dynabeads compatible with centrifugation?

Dynabeads are not designed or intended to be used with centrifugation. Pressure from centrifugal forces should not theoretically be a problem for the Dynabeads themselves due to their rigid nature and composition. However, the force exerted by the Dynabeads on surrounding cells within the pellet may be detrimental to cell viability.

Find additional tips, troubleshooting help, and resources within our Dynabeads Cell Isolation and Expansion Support Center.

What is the level of support offered when using CTS Dynabeads and CTS Detachable Dynabeads in clinical trials and commercial manufacturing?

Our CTS Dynabeads and CTS Detachable Dynabeads are supported with Drug Master Files (DMFs), Regulatory Support Files (RSFs), and other traceability documentation.

We have dedicated resources from our Quality and Regulatory teams to support customers who enter into a Commercial Supply Agreement with us.

Find additional tips, troubleshooting help, and resources within our Dynabeads Cell Isolation and Expansion Support Center.

Is there any research evidence demonstrating that CD3+CD28+ T cells are better than CD3+ only T cells in immunotherapy? Some researchers hypothesize that if CD3+CD28- T cells are excluded, important subsets may be missed and cell recovery would be lower.

CD28- T cells in the starting material prior to manufacturing are associated with exhausted T cells and not relevant for the clinical efficacy nor persistence of the T cell drug in vivo in the patient.

Naive T cells require three essential signals for activation: T cell receptor (or CD3) engagement, co-stimulatory receptors (such as CD28) activation, and cytokine stimulation (IL-2 for expansion). Activated T cells downregulate the co-stimulatory molecule CD28 and loosen its expression altogether upon chronic antigen exposure. Downregulation of CD28 is a hallmark of senescent T cells. CD3+CD28- cells are therefore activated T cells and are susceptible to activation-induced cell death (AICD) if re-stimulated in the absence of the co-stimulatory receptor CD28. If isolated, these cells will die during the first hours of the expansion process.

Please see the following references:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6600236/
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.0105-2896.2005.00256.x
https://pubmed.ncbi.nlm.nih.gov/10882412/

Find additional tips, troubleshooting help, and resources within our Dynabeads Cell Isolation and Expansion Support Center.

As CTS Detachable Dynabeads CD3/CD28 (Cat. Nos. A56996) and CTS Dynabeads CD3/CD28 (Cat. No. 40203D) bind to both CD3 and CD28 markers, does it mean that CD3 positive CD28 negative cell subsets are excluded from the positive fraction?

Yes, CTS Detachable Dynabeads CD3/CD28 (Cat. No. A56996) and CTS Dynabeads CD3/CD28 (Cat. No. 40203D) preferentially isolate CD3+ CD28+ double-positive T cells, which are demonstrated to contain the clinically relevant subset of T cells (i.e., CD27 positive, PD-1 negative, CD8 positive CAR T cells).

Also note that CTS Dynabeads is the only isolation technology on the market that excludes exhausted T cells from the manufacturing of T cell drugs. Please see this reference from University of Pennsylvania & Novartis that used CTS Dynabeads CD3/CD28 in a clinical study of patients with Chronic Lymphocytic Leukemia (CLL): https://pubmed.ncbi.nlm.nih.gov/29713085/

Find additional tips, troubleshooting help, and resources within our Dynabeads Cell Isolation and Expansion Support Center.

What is the difference between CTS Detachable Dynabeads CD3/CD28 (Cat. No. A56996) and CTS Dynabeads CD3/CD28 (Cat. No. 40203D)?

When used with the CTS Detachable Dynabeads Release Buffer, CTS Detachable Dynabeads CD3/CD28 (Cat. No. A56999) can be actively detached from target T cells at any desired time.

On the other hand, CTS Dynabeads CD3/CD28 (Cat. No. 40203D) that launched to market in 2006 may not be actively detached from target T cells. They passively dissociate from the target T cells post-isolation, over time, based on the binding kinetics of antibodies conjugated to the surface.

Please note that both products contain the same M-450 Dynabeads microspheres at their core but all other raw materials used, such as the antibodies, are different between the two products.

Find additional tips, troubleshooting help, and resources within our Dynabeads Cell Isolation and Expansion Support Center.

What do the designations M-280, M-270, and MyOne mean on Dynabeads magnetic beads?

The M stands for magnetic. M-280 refers to hydrophobic 2.8 micron beads, while M-270 refers to hydrophilic 2.8 micron beads. MyOne refers to 1 micron beads.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

What is the detection limit when using Dynabeads magnetic beads for immunoprecipitation (IP)?

Answering this question is not straightforward. It will depend on the detection method. When using HRP (horseradish peroxidase)-based detection system or radioactivity in combination with a good antibody, very little target is required. More target is required when using an AP (alkaline phosphatase)-based detection system. When a sensitive detection system is used, detection will most likely be in the nanogram range. In some cases, pictograms of target can be detected.

Find additional tips, troubleshooting help, and resources within our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

What is the elution volume when using Dynabeads magnetic beads for immunoprecipitation (IP)?

Within practical limits, the elution volume can be scaled up or down to suit your experiment. However, volumes less than 10 µL become more difficult to work with. In addition, the amount of target is important. If you have a lot of beads with a lot of bound target in a small elution volume, your elution may not be very efficient. Typically, 15-100 µL of beads may be eluted in 30 µL. For efficient recovery of the antigen and/or binding partners, the elution volume should at minimum equal the volume of the beads.

Find additional tips, troubleshooting help, and resources within our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

How can I quantify the amount of antibody bound to Dynabeads magnetic beads?

There are several methods to quantify the amount of antibody bound to the beads. The crudest method is to measure the concentration of antibody in the coupling reaction before and after antibody attachment. Either fluorescence measurements or absorbance at 280 nm can be used. Alternatively, you could measure the amount of antibody bound to the beads by fluorescence, chemiluminescence, or radiolabeling detection methods.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

How long should I incubate my antibody with the lysates?

Incubation time will depend on the immunogenicity of the primary antibody and its binding affinity with the specific antigens. For a good primary antibody, 30-40 minutes incubation should work well. If you are working with a poor antibody or a very low-abundance protein, you could try to increase binding by incubating overnight. However, this also increases the chance of background protein binding.

Find additional tips, troubleshooting help, and resources within our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

When should I covalently bind the antibody to the Dynabeads surface?

If the target protein has the same molecular weight as the heavy or light chain antibody, we would recommend covalently binding the antibody to the bead surface. This can be done by either crosslinking the antibody to the Dynabeads Protein A or G magnetic beads, or secondary coated beads, or by using one of the surface-activated Dynabeads magnetic beads.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

What are the general advantages of using Dynabeads magnetic beads for protein isolation?

Using Dynabeads magnetic beads for protein isolation provides several advantages:

-Rapid binding kinetics: since the number of beads per volume for Dynabeads is approximately 1,000 times higher than for the same volume of a Sepharose slurry, the probability for Dynabeads magnetic beads to hit the target is far greater.

-Incubation time: due to the rapid binding kinetics, the protocol is usually very short.
-Low background: due to the rapid binding kinetics and the short incubation time, the background is also very low.
-Trapping of impurities: the beads offer no internal volume for binding or trapping of impurities.
-Low antibody consumption: this is because Dynabeads magnetic beads are nonporous, uniform superparamagnetic, monodispersed, highly crosslinked polystyrene microspheres consisting of an even dispersion of magnetic material throughout the bead. The beads are coated with a thin layer of a highly crosslinked polystyrene shell that encases the magnetic material and prevents any leakage from the beads or trapping of ligands in the bead interior. The outer layer also provides a defined surface area for the adsorption or coupling of various molecules such as antibodies. Uniformity of bead size and shape provide consistent physical and chemical properties. These uniform physical characteristics lead to high-quality, reproducible results.
-Reproducibility: due to easier practical handling, such as pipetting. No centrifugation steps or preclearing are required.

Find additional tips, troubleshooting help, and resources within ourProtein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

Are Dynabeads magnetic beads compatible with dithionite, DTT, and EDTA?

No. Not only is dithionite a reducing agent, but the strong affinity of the dithionite ion for bivalent and trivalent metal cations (M2+, M3+) allows it to enhance the solubility of iron, making it a chelating agent. As a result, the iron in the Dynabeads magnetic beads is reduced and pulled out when they are exposed to dithionite. The same is observed if Dynabeads magnetic beads are exposed to DTT and EDTA. With EDTA, we highly recommend checking the minimal amount of EDTA that your specific molecules would tolerate for binding to the Dynabeads, and if it will affect your specific application. For some applications, low concentrations of EDTA can be tolerated by Dynabeads. On the other hand, using 10 mM EDTA with heating affects the binding of biotin molecules to Dynabeads streptavidin.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

Are Dynabeads magnetic beads compatible with Urea?

Yes, they are compatible with 6-8 M Urea when used during post-coupling steps.

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.

Are Dynabeads magnetic beads compatible with centrifugation?

Dynabeads magnetic beads, being magnetic in nature are really not designed to be centrifuged. That being said, the beads themselves are compact, as the pores in the polymer matrix are filled with magnetic material and coated with a final outer polymer shell that will further add to the rigidity of the beads. Hence, pressure should theoretically not be a problem for the beads themselves, but the force exerted by the beads on surrounding cells in the pellet may be detrimental to the cells.

Find additional tips, troubleshooting help, and resources within our Dynabeads Nucleic Acid Purification Support Center as well as our Protein Immunoprecipitation (IP), Co-Immunoprecipitation (Co-IP), and Pulldown Support Center.

What are the benefits of using magnetic beads in immunoprecipitation (IP) experiments?

Magnetic beads, unlike agarose beads, are solid and spherical, and antibody binding is limited to the surface of each bead. While magnetic beads do not have the advantage of a porous center to increase the binding capacity, they are significantly smaller than agarose beads (1 to 4 µm), which collectively gives them adequate surface area-to-volume ratios for optimum antibody binding.

High-power magnets are used to localize magnetic beads to the side of the incubation tube and out of the way to enable cell lysate aspiration without the risk of also aspirating immune complexes bound to the beads. Magnetic separation avoids centrifugation, which can break weak antibody-antigen binding and cause loss of target protein.

However, an issue with the use of magnetic beads is that bead size variations may prevent all beads from localizing to the magnet. Additionally, while immunoprecipitation using agarose beads only requires standard laboratory equipment, the use of magnetic beads for immunoprecipitation applications requires high-power magnetic equipment that can be cost-prohibitive. Read more about our Magnetic Immunoprecipitation Products (https://www.thermofisher.com/us/en/home/life-science/protein-biology/protein-assays-analysis/immunoprecipitation.html#products).

Find additional tips, troubleshooting help, and resources within our Protein Assays and Analysis Support Center.