Amino Allyl MessageAmp™ II aRNA Amplification Kit
Amino Allyl MessageAmp™ II aRNA Amplification Kit
Invitrogen™

Amino Allyl MessageAmp™ II aRNA Amplification Kit

El kit de amplificación de ARNa MessageAmp™ II de aminoalilo incluye reactivos para la amplificación de ARNa con incorporación deMás información
Have Questions?
Número de catálogoCantidad
AM175320 reacciones
Número de catálogo AM1753
Precio (MXN)
-
Cantidad:
20 reacciones
El kit de amplificación de ARNa MessageAmp™ II de aminoalilo incluye reactivos para la amplificación de ARNa con incorporación de aminoalilo NTP. El kit incluye reactivos suficientes para 20 reacciones. No se incluyen los colorantes Cy™.

Síntesis mejorada de ADNc de primera y segunda cadena
En el kit se incluye ArrayScript™ RT, una transcriptasa inversa M-MLV de ingeniería racional que ofrece una producción equivalente o superior de ADNc de longitud completa en comparación con otras enzimas. La reacción de síntesis de ADNc de segunda cadena también se ha optimizado para ser compatible con los productos de ADNc de primera cadena generados con ArrayScript™ RT para permitir la máxima conversión de ADNc de primera cadena en plantillas de ADNc bicatenario de longitud completa.

Aumento de la eficacia de etiquetado de su ARNa
El kit de amplificación de ARNa MessageAmp™ II de aminoalilo incorpora aminoalilo NTP en el ARNa seguido por el acoplamiento de su grupo amino reactivo a una etiqueta de éster NHS (por ejemplo, Cy™ u otro colorante). Esta estrategia ofrece varias ventajas sobre la incorporación directa de NTP etiquetados. La incorporación directa de NTP etiquetados es ineficiente y tiene como resultado bajos rendimientos y baja actividad específica de ARNa y altos costes. A diferencia de los NTP etiquetados, los NTP modificados con aminoalilo se incorporan casi tan eficientemente como los NTP no modificados y son mucho menos costosos que los NTP acoplados con colorante.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Incluye etiqueta o tinteNo
Método de etiquetadoEtiquetado indirecto
Línea de productosAmbion, MessageAmp
Tipo de productoKit de amplificación de ARNa
Cantidad20 reacciones
Transcriptasa inversaArrayScript™
Tipo de muestraARN Poly(A+), ARN total
FormatoKit
Unit SizeEach
Contenido y almacenamiento
• 60 µl de primer T7 Oligo(dT) (-20 °C)
• 22 µl de Transcriptasa inversa ArrayScript™ (-20 °C)
• 22 µl de inhibidor de la ARNasa (-20 °C)
• 42 µl de tampón de primera cadena 10X (-20 °C)
• 170 µl de mezcla de dNTP (-20 °C)
• 210 µl de tampón de segunda cadena 10X (-20 °C)
• 42 µl de ADN polimerasa (-20 °C)
• 22 µl de ARNasa H (-20 °C)
• 84 µl de mezcla de enzimas T7 (-20 °C)
• 84 µl de tampón de reacción 10X (-20 °C)
• 95 µl de solución UTP 50 mM (-20 °C)
• 64 µl de 5-(3-amino alil)-UTP 50 mM (-20 °C)
• 255 µl de mezcla de ATP, CTP, GTP (-20 °C)
• 40 µl de primers de segunda ronda (-20 °C)
• 10 µl de ARN de control 1 mg/ml (-20 °C)
• 1,75 ml de agua sin nucleasas (cualquier temperatura)
• 400 µl de tampón de acoplamiento (-20 °C)
• 440 µl de DMSO (-20 °C)
• 180 µl de hidroxilamina 4 M (-20 °C)
• 40 ml de tampón de lavado (4 °C o temperatura ambiente)
• 7 ml de tampón de unión de ADNc (temperatura ambiente)
• 20 ml de tampón de unión de ARNa (temperatura ambiente)
• 20 cartuchos de filtro de ARNa (temperatura ambiente)
• 40 tubos de recogida de ARNa (temperatura ambiente)
• 20 cartuchos de filtro de ADNc etiquetado + tubos (temperatura ambiente)
• 20 tubos de elución de ADNc (temperatura ambiente)
• 10 ml de agua sin nucleasas (cualquier temperatura)
• 20 cartuchos de filtro de ARNa etiquetado + tubos (temperatura ambiente)
• 20 tubos de elución de ARNa etiquetado (temperatura ambiente)

Preguntas frecuentes

What is the typical size range of amplified RNA?

A single round of amplification yields product sizes ranging from 200 bases to 6 kb. The majority of these products are approximately 1.5 kb in length. A second round of amplification will result in shorter products. We recommend using an Agilent 2100 bioanalyzer to visualize these products. Amplification products can be visualized by agarose gel electrophoresis; they will migrate as a smear. Although this data is still useful, it is less informative than bioanalyzer analysis.

Find additional tips, troubleshooting help, and resources within our Epigenetics Support Center.

How do direct and indirect labeling of aRNA differ?

Direct labeling is incorporation of modified NTPs into amplification products during the IVT step of the amplification process. To make aRNA that is labeled with fluorescent dyes, a mixture of dye-modified and unmodified (or unlabeled) nucleotides are typically used in order to obtain an optimal ratio of dye-labeled to unlabeled nucleotide for maximal fluorescence. Usually ~200-400 µM of dye-labeled CTP is used with 1-3 mM unlabeled NTPs. Biotin-modified nucleotides are incorporated fairly well with T7 RNA polymerase. We recommend that you use UTP:biotin-UTP ratios of 1:1 to 3:1. In general, labeled nucleotides are not incorporated as efficiently as unlabeled molecules during amplification, and therefore direct labeling does compromise sample yield. Furthermore, if both Cy5 and Cy3 are used in a direct labeling reaction, Cy5 is not incorporated as well as Cy3, and corrections during data analysis are necessary to adjust for this disparity.

Indirect labeling incorporates amino allyl UTP into amplification products during the IVT, and the amino allyl-modified aRNA produced is then chemically coupled to a detectable moiety such as a fluorescent dye or biotin. This method, though more time-consuming than direct labeling, can result in very highly labeled aRNA because amino allyl-modified UTP is incorporated very efficiently by T7 RNA polymerase.

Find additional tips, troubleshooting help, and resources within our Epigenetics Support Center.

Why is RNA amplification necessary?

Glass microarray analysis experiments typically require 5-20 µg of total RNA per slide for sample labeling and hybridization. Thus, microarray-based gene expression analysis of very small samples [laser capture microdissection (LCM), tissue biopsies, or other clinical samples] is difficult due to the very low amounts of total RNA recovered from the samples. Linear amplification of RNA from small samples produces sufficient quantities of RNA for sample labeling and hybridization. Since the amplification technique is highly reproducible and maintains representation of the gene expression in the original sample, it is recommended for probe synthesis by most manufacturers of commercially available microarrays.

Find additional tips, troubleshooting help, and resources within our Epigenetics Support Center.

How is fold amplification calculated?

RNA amplification using the Van Gelder and Eberwine technique (Van Gelder 1990) utilizes an oligo(dT) primer containing the T7 RNA polymerase promoter for synthesis of first strand cDNA. The poly(A) tail at the end of mRNA sequences serves as the substrate for the binding of these primers. Since mRNA typically constitutes only 1-5% of the total RNA in the cell, only this fraction of the total RNA is amplified. The tissue type, its developmental state, and its health all influence the actual proportion of mRNA in a total RNA sample. Total RNA from brain, testes, and embryonic tissues may contain up to 4% mRNA, while RNA from many other tissues will have only 1% or less mRNA. The RNA isolation method can also influence mRNA content. The generally accepted average value for mRNA content is about 2% of a total RNA sample. When 1 µg of total RNA, 2% or 20 ng of which is mRNA, is amplified 1000-fold, yields of 20 µg aRNA (or cRNA) should be expected. You may observe higher fold amplification when starting with lower amounts of total RNA. This is because, in an in vitro transcription (IVT) reaction, a finite amount of RNA can be synthesized with the fixed amount of NTPs. When starting with less RNA, NTPs do not become limiting until the RNA is amplified beyond the typical 1000-2000 fold amplification levels seen with higher amounts of input RNA.

Find additional tips, troubleshooting help, and resources within our Epigenetics Support Center.