RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE
RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE
RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE
RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE
Invitrogen™

RecoverAll™ Total Nucleic Acid Isolation Kit for FFPE

El kit de aislamiento de ácidos nucleicos totales RecoverAll™ para FFPE se destina a la extracción de ácidos nucleicos totalesMás información
Have Questions?
Número de catálogoCantidad
AM197540 preparaciones
Número de catálogo AM1975
Precio (MXN)
-
Cantidad:
40 preparaciones
El kit de aislamiento de ácidos nucleicos totales RecoverAll™ para FFPE se destina a la extracción de ácidos nucleicos totales de tejidos fijados en formol incluido en parafina (FFPE) o en paraformol incluido en parafina. Se incluyen reactivos suficientes para 40 purificaciones de hasta cuatro secciones de 20 μm o de hasta 35 mg de muestras del núcleo sin secciones. Características del kit de aislamiento de ácidos nucleicos totales RecoverAll™ para FFPE:

• Optimizado para el aislamiento de ácidos nucleicos totales, incluido el microARN, a partir de tejido FFPE
• No es necesaria la digestión de la proteinasa K durante la noche: desparafine por la mañana y realice la qRT-PCR por la tarde.
• El rendimiento típico es > 50 % en comparación con los tejidos no fijados.
• Los ácidos nucleicos recuperados son adecuados para la secuenciación de última generación, la RT-PCR en tiempo real, la PCR, la detección de mutaciones y los análisis con micromatrices

Extracción de ácidos nucleicos de muestras difíciles
Las muestras de tejido archivadas contienen información valiosa sobre los grados de enfermedad, pero tradicionalmente era difícil aislar los ácidos nucleicos de estas muestras con una calidad adecuada para el análisis molecular. Las técnicas de conservación estándar utilizan formol, que mantiene la estructura del tejido y evita la putrefacción, pero que también atrapa los ácidos nucleicos y los modifica a través de los entrecruzamientos proteína-proteína y proteína-ácido nucleico. Con frecuencia, el ARN (y hasta cierto punto el ADN) está tan fragmentado y modificado a nivel químico que es incompatible con muchas técnicas de análisis molecular. La fragmentación del ARN en tejidos FFPE no puede invertirse, pero las condiciones para la digestión de proteasas del kit RecoverAll™ se han diseñado para liberar una cantidad máxima (consulte la figura) de fragmentos de ARN atrapado de todos los tamaños, incluido el microARN, en una cantidad de tiempo relativamente corta.

Solución del kit de aislamiento de ácidos nucleicos totales RecoverAll™
El procedimiento del kit de aislamiento de ácidos nucleicos totales RecoverAll™ requiere unos 45 minutos de manipulación y habitualmente puede completarse en menos de 1 día en el caso del ARN. Las muestras FFPE se desparafinan con una serie de lavados de etanol y xileno. A continuación, se las somete a una extensa digestión de proteasas con un tiempo de incubación adaptado a la recuperación del ARN o el ADN. Después, los ácidos nucleicos se purifican con un método rápido de filtrado con vidrio y se eluyen en agua o en un tampón bajo en sal.

Ácidos nucleicos para prácticamente cualquier aplicación posterior
Como ocurre con todos los tejidos FFPE, la fijación y el almacenamiento de la muestra suele provocar la modificación y fragmentación de los ácidos nucleicos. Por lo tanto, es posible que para obtener unos resultados óptimos sea necesario modificar las aplicaciones posteriores, como los análisis de micromatrices, que requieren un ARN más cristalino que la qRT-PCR. Aunque el ADN no suele fragmentarse tan fácilmente como el ARN, parece que reacciona más al formol y que requiere un tiempo de digestión de proteasas superior (2 días) para liberar cantidades importantes de ADN.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Volumen de elución60 μL
Tipo de producto finalADN genómico, ARN total, micro ARN
Para utilizar con (aplicación)Secuenciación de última generación, PCR cuantitativa en tiempo real (qPCR), PCR de transcriptasa inversa (RT-PCR), análisis de microARN, Southern Blotting, Northern Blotting, PCR, construcción de bibliotecas de ADNc
Compatibilidad de alto rendimientoNo compatible con alto rendimiento (manual)
Tiempo de purificación45 min
Cantidad40 preparaciones
Condiciones de envíoBox 1: Room Temperature
Box 2: Dry Ice
Cantidad de material de partidaHasta 35 mg de muestras de núcleo sin seccionar, hasta cuatro secciones de 20 µm
Producción24 µg
Isolation TechnologyColumna de centrifugado (filtro de fibra de vidrio)
Tipo de muestraFFPE y muestras fijas, Paraffin-embedded (FFPE) Tissue
Unit SizeEach
Contenido y almacenamiento
• 16 ml de tampón de digestión (temperatura ambiente)
• 60 ml de concentrado de lavado 1 (temperatura ambiente)
• 60 ml de concentrado de lavado 2/3 (temperatura ambiente)
• 80 tubos de recogida (temperatura ambiente)
• 40 cartuchos filtrantes (temperatura ambiente)
• 19,2 ml de aditivo de aislamiento (temperatura ambiente)
• 5 ml de solución de elución (-20 °C, 4 °C o temperatura ambiente)
• 160 µl de proteasa (-20 °C)
• 240 µl de tampón 10X ADNasa (-20 °C)
• 160 µl de ADNasa (-20 °C)
• 400 µl de ARNasa A (-20 °C)

Este kit se envía en dos partes: una conservada a temperatura ambiente y otra a -20 °C.

Preguntas frecuentes

I want to isolate miRNA from formalin-fixed and unfixed laser capture microdissection (LCM) samples. Which kit will be best for this?

For recovery of miRNA of formalin-fixed samples, we recommend using RecoverAll Total Nucleic Acid Isolation Kit for FFPE. You can isolate total and miRNA using the RecoverAll Total Nucleic Acid Isolation Kit for FFPE, then use that prep for enrichment of miRNA using the enrichment protocol described in the instructions for the mirVana kit. For unfixed LCM samples, you could use an RNAqueous kit.

How can I increase my chances of successful extraction of FFPE samples in terms of DNA quality and yield?

There are a number of factors that can impact the overall quality and yield of DNA isolated from FFPE tissues. Here are recommendations to address several key factors:

- Upstream tissue procurement and tissue specimen preparation - if possible, tissues should be fixed within one hour of surgical resection. The optimal fixation time is 12-24 hours using neutral-buffered formalin or paraformaldehyde. Fixed tissues should be thoroughly dehydrated prior to the embedding process.
- Block storage - storage of blocks without cut faces, when possible, prevents ongoing damage from exposure to atmospheric oxygen, water, and other environmental factors such as light and infestation (fungi, insects, etc.).
- Tissue type, size, and amount being used for DNA isolation - the recommended tissue thickness is 10-20 µm. The number of sections used is determined by the tissue type (which impacts cell density) and surface area (recommended size: 50-300 mm^2). Excess starting material can cause filter clogging, resulting in poor yield.
- Excessive amount of paraffin used for embedding tissues - when possible, excess paraffin should be trimmed away prior to starting the purification protocol. For xylene-based purification methods, two xylene treatments at room temperature should be sufficient for complete deparaffinization. If desired, a more rigorous 37-55 degrees C treatment can be performed for up to 30 minutes. After the xylene deparaffinization, it is crucial that the 100% ethanol is completely removed and the pellets are dry after the two 100% ethanol washes. The magnetic bead method employs novel chemistries to deal with the paraffin that limits input to 20 µm sections.

Read more about extraction of nucleic acids from FFPE samples here (http://www.thermofisher.com/us/en/home/references/Invitrogen-tech-support/rna-isolation/general-articles/extraction-of-nucleic-acids-from-ffpe-samples.html).

What can I use to extract DNA from FFPE (formalin fixed paraffin embedded) samples?

We offer 2 kits: RecoverAll Total Nucleic Acid Isolation Kit for FFPE and MagMAX FFPE DNA/RNA Ultra Kit Read more about the differences between these kits here (http://www.thermofisher.com/us/en/home/life-science/dna-rna-purification-analysis/dna-extraction/genomic-dna-extraction/dna-extractions-working-with-ffpe-samples.html).

I want to extract DNA, and if possible, RNA from formalin-fixed specimens in paraffin blocks. Which product would work for me?

We recommend the RecoverAll Total Nucleic Acid Isolation Kit for FFPE (Cat. No. AM1975). This kit is optimized for isolation of both DNA and RNA from formalin or paraformalin-fixed, paraffin-embedded (FFPE).

Another option is TRIzol Reagent, but be sure to check the references listed below. Because paraffin is not soluble in TRIzol Reagent, paraffin-embedded tissues can be quick-heated to get the tissue out of the paraffin; any paraffin which remains will float to the top of the aqueous phase (and should be avoided). (If the slice is very thin, the whole slice can be added to the TRIzol Reagent, and hopefully, the tissue will be exposed to the reagent). Most of the references we surveyed do not provide quantitative data, because paraffin-embedded tissues are dramatically influenced by the action of nucleases prior to fixation and by the formalin fixation time.

The ability to detect specific housekeeping genes by PCR analysis with RNA or DNA extracted from these tissues is usually considered to be a positive result. We do not have a protocol per se, but we have spoken with customers who are doing this. We recommend deparaffinizing with xylene (or other organic), then grinding the sample very thoroughly in TRIzol Reagent (may require a Polytron); in most cases, you have to homogenize with vigor because the DNA is crosslinked and you have to get it free. Microcarrier is recommended since the RNA is crosslinked and fragmented. From this point, the standard isolation protocol can be used. They have found publications that show that the success of the isolation is dependent on how long the sample was fixed (there is an inverse relationship): Inoue, T., et. al., Pathology International (1996) Vol 46, Iss 12, pp. 997-1004.

What are the differences among RNase H, RNase A, RNase B, and RNase C? In your cDNA kits, RNase H is added in the second-strand reaction to produce more nicked RNA as primers for DNA synthesis. In this repect, would RNaseOUT RNase inhibitor influence the function of RNase H, if it was added even before first-strand synthesis?

The main difference between all RNases is where they cleave the RNA (what site they recognize) and whether it is single stranded or double stranded. RNase H is an endoribonuclease that specifically hydrolyzes the phosphodiester bonds of RNA in RNA:DNA duplexes to generate products with 3' hydroxyl and 5' phosphate ends. It will not degrade single-stranded or double-stranded DNA or RNA.

RNase A is an endoribonuclease that specifically hydrolyzes RNA after C and U residues. Cleavage occurs between the 3'-phosphate group of a pyrimidine ribonucleotide and the 5'-hydroxyl of the adjacent nucleotide. The reaction generates a 2':3' cyclic phosphate which then is hydrolyzed to the corresponding 3' nucleoside phosphates.

RNase B is a glycoprotein that possesses an amino acid composition indistinguishable from that of RNase A and contains carbohydrate (6 residues of mannose and 2 residues of N-acetylglucosamine per molecule). It is consequently considered to be a carbohydrate derivative of RNase A. (Reference: Tarentino A et al (1970) J Biol Chem 245:4150.) RNase B has the same specificity as RNase A. (Reference: Plummer T (1963) J Biol Chem 238:1396.)

RNaseOUT RNase inhibitor inhibits RNase A, B, and C but does not inhibit RNase 1, RNase T1, S1 Nuclease, RNase H, RNase T2. Any RNaseOUT RNase inhibitor present from the first-strand synthesis will not cause a problem for the RNase H that is used in second-strand synthesis. RNaseOUT RNase inhibitor will not inhibit DNase I.

Citations & References (1)

Citations & References
Abstract
Formamide as a denaturant for bisulfite conversion of genomic DNA: Bisulfite sequencing of the GSTPi and RARbeta2 genes of 43 formalin-fixed paraffin-embedded prostate cancer specimens.
Authors:Zon G, Barker MA, Kaur P, Groshen S, Jones LW, Imam SA, Boyd VL,
Journal:Anal Biochem
PubMed ID:19505431
'Analysis of methylated DNA, which refers to 5-methycytosine (5mC) versus cytosine (C) at specific loci in genomic DNA (gDNA), has received increased attention in epigenomics, particularly in the area of cancer biomarkers. Many different methods for analysis of methylated DNA rely on initial reaction of gDNA with concentrated acidic sodium ... More