One Shot™ BL21(DE3) chemisch kompetente E. coli
One Shot&trade; BL21(DE3) chemisch kompetente <i>E. coli</i>
Invitrogen™

One Shot™ BL21(DE3) chemisch kompetente E. coli

One Shot™ BL21(DE3) chemisch kompetente E. coli sind für den Einsatz mit bakteriophagen T7-Promoter-basierten Expressionssystemen geeignet(z. B. pRSET, pCR™T7 undWeitere Informationen
Have Questions?
KatalognummerMenge
C60000321 x 50 μl
Katalognummer C600003
Preis (EUR)
369,65
Exklusiv online
411,00
Ersparnis 41,35 (10%)
Each
Zum Warenkorb hinzufügen
Menge:
21 x 50 μl
Preis (EUR)
369,65
Exklusiv online
411,00
Ersparnis 41,35 (10%)
Each
Zum Warenkorb hinzufügen
One Shot™ BL21(DE3) chemisch kompetente E. coli sind für den Einsatz mit bakteriophagen T7-Promoter-basierten Expressionssystemen geeignet(z. B. pRSET, pCR™T7 und pET). BL21(DE3)-Zellen tragen das Lambda DE3-Lysogen. Rekombinante Proteine, die ungiftig für E. coli sind, werden in der Regel in BL21(DE3)-Zellen stärker exprimiert als in BL21(DE3)pLysS oder BL21(DE3)pLysE. Allerdings ist das basale Expressionsniveau heterologer Gene in BL21(DE3) deutlich höher als in BL21(DE3)pLysS oder BL21(DE3)pLysE.

Informationen über BL21-Stämme
Die Bakterienstämme BL21 sind abgeleitet vom Stamm E. coli B und wurden speziell für eine hohe Expression von rekombinanten Proteinen entwickelt. Diese Stämme besitzen zwei Eigenschaften, die für die Proteinexpression entscheidend sind: bedeutende genetische Marker und eine Induzierbarkeit der Proteinexpression. Die wichtigen genetischen Marker tragen dazu bei, dass rekombinante RNA und/oder Proteine in hohem Maße und ohne Abbauprozesse angereichert werden. Induzierbarkeit trägt zur Minimierung toxischer Nebenwirkungen einiger rekombinanter Proteine bei.
Nur für Forschungszwecke. Nicht zur Verwendung bei diagnostischen Verfahren.
Specifications
Bakterielle AntibiotikaresistenzNo
Blau-Weiß-ScreeningNein
Klonierung methylierter DNANein
Enthält F'-EpisomF'-Episom fehlt
Hochdurchsatz-KompatibilitätNicht mit hohen Durchsatz kompatibel (manuell)
Verbessert die PlasmidqualitätNein
Improves Protein StabilityYes (lon, ompT)
Improves RNA StabilityNo
Vorbereitung von nicht methylierter DNAYes (dcm)
ProduktlinieOne Shot
ProdukttypKompetente Zelle
Menge21 x 50 μl
Reduziert RekombinationNein
VersandbedingungTrockeneis
T1-Phage – resistent (TonA)Nein
Toxic ProteinsNo
TransformationsleistungsgradMittlere Effizienz (10^8–10^9 cfu⁄µg)
FormatRörchen
PromoterT7.
SpeziesE. coli
Unit SizeEach
Inhalt und Lagerung
Enthält:
• One Shot™ BL21(DE3) E. coli: 20 Fläschchen, je 50 µl (insgesamt 1 ml)
• pUC19 DNA (10 pg/ul): 1 Fläschchen, 50 µl
• S.O.C-Medium: 1 Flasche, 6 ml

Kompetente Zellen bei -80 °C lagern. Lagern Sie pUC19 DNA bei -20 °C. SOC-Medium bei +4 °C oder Raumtemperatur lagern.

Häufig gestellte Fragen (FAQ)

My gene of interest is toxic to bacterial cells. Are there any precautions you can suggest?

Several precautions may be taken to prevent problems resulting from basal level expression of a toxic gene of interest. These methods all assume that the T7-based or Champion-based expression plasmid has been correctly designed and created.

- Propagate and maintain your expression plasmid in a strain that does not contain T7 RNA polymerase (i.e., DH5α).
- If using BL21 (DE3) cells, try growing cells at room temperature rather than 37 degrees C for 24-48 hr.
- Perform a fresh transformation using a tightly regulated E. coli strain, such as BL21-AI cells.
- After following the transformation protocol, plate the transformation reaction on LB plates containing 100 µg/mL ampicillin and 0.1% glucose. The presence of glucose represses basal expression of T7 RNA polymerase.
- Following transformation of BL21-AI cells, pick 3 or 4 transformants and inoculate directly into fresh LB medium containing 100 µg/mL ampicillin or 50 µg/mL carbenicillin (and 0.1% glucose, if desired). When the culture reaches an OD600 of 0.4, induce expression of the recombinant protein by adding L-arabinose to a final concentration of 0.2%.
- When performing expression experiments, supplement the growth medium with 0.1% glucose in addition to 0.2% arabinose.
- Try a regulated bacterial expression system such as our pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system. How do I know if I'm seeing degradation of my protein or if what I’m seeing is codon usage bias?

Typically, if you see 1-2 dominant bands, translation stopped prematurely due to codon usage bias. With degradation, you usually see a ladder of bands. With degradation, you can try using a protease inhibitor and add it to the lysis buffer to help prevent degradation. If degradation is the issue, a time point experiment can be done to determine the best time to harvest the cells.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system and am getting inclusion bodies. What should I do?

If you are having a solubility issue, try to decrease the temperature or decrease the amount of IPTG used for induction. You can also try a different, more stringent cell strain for expression. Adding 1% glucose to the bacterial culture medium during expression can also help.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm getting low protein yield from my bacterial expression system. What can I do to improve this?

- Inoculate from fresh bacterial cultures, since higher protein yields are generally obtained from a fresh bacterial colony.

- Check the codon usage in the recombinant protein sequence for infrequently used codons. Replacing the rare codons with more commonly used codons can significantly increase expression levels. For example, the arginine codons AGG and AGA are used infrequently by E. coli, so the level of tRNAs for these codons is low.

- Add protease inhibitors, such as PMSF, to buffers during protein purification. Use freshly made PMSF, since PMSF loses effectiveness within 30 min of dilution into an aqueous solution.

- If you are using ampicillin for selection in your expression experiments, you may be experiencing plasmid instability due to the absence of selective conditions. This occurs as the ampicillin is destroyed by β-lactamase or hydrolyzed under the acidic media conditions generated by bacterial metabolism. You may want to substitute carbenicillin for ampicillin in your transformation and expression experiments.

- The recombinant protein may be toxic to bacterial cells. Try a tighter regulation system for competent cell expression such as BL21-AI. You may also consider trying a different expression system such as the pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

My cells are growing very slowly, and I'm not getting any protein expression from my baterial expression system. What can I do to fix this?

This typically occurs when your gene of interest is toxic. Try using a tighter regulation system, such as BL21 (DE3) (pLysS) or BL21 (DE3) (pLysE), or BL21(AI).

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Zitierungen und Referenzen (12)

Zitierungen und Referenzen
Abstract
The interaction between HIV-1 Gag and human lysyl-tRNA synthetase during viral assembly.
Authors:Javanbakht H, Halwani R, Cen S, Saadatmand J, Musier-Forsyth K, Gottlinger H, Kleiman L,
Journal:J Biol Chem
PubMed ID:12756246
'Human lysyl-tRNA synthetase (LysRS) is a tRNA-binding protein that is selectively packaged into HIV-1 along with its cognate tRNALys isoacceptors. Evidence exists that Gag alone is sufficient for the incorporation of LysRS into virions. Herein, using both in vitro and in vivo methods, we begin to map regions in Gag ... More
The anti-trp RNA-binding attenuation protein (Anti-TRAP), AT, recognizes the tryptophan-activated RNA binding domain of the TRAP regulatory protein.
Authors: Valbuzzi Angela; Gollnick Paul; Babitzke Paul; Yanofsky Charles;
Journal:J Biol Chem
PubMed ID:11786553
'In Bacillus subtilis, the trp RNA-binding attenuation protein (TRAP) regulates expression of genes involved in tryptophan metabolism in response to the accumulation of l-tryptophan. Tryptophan-activated TRAP negatively regulates expression by binding to specific mRNA sequences and either promoting transcription termination or blocking translation initiation. Conversely, the accumulation of uncharged tRNA(Trp) ... More
The ISG15 isopeptidase UBP43 is regulated by proteolysis via the SCFSkp2 ubiquitin ligase.
Authors:Tokarz S, Berset C, La Rue J, Friedman K, Nakayama K, Nakayama K, Zhang DE, Lanker S,
Journal:J Biol Chem
PubMed ID:15342634
'The Skp2 oncoprotein belongs to the family of F-box proteins that function as substrate recognition factors for SCF (Skp1, cullin, F-box protein) E3 ubiquitin-ligase complexes. Binding of the substrate to the SCFSkp2 complex catalyzes the conjugation of ubiquitin molecules to the bound substrate, resulting in multi-ubiquitination and rapid degradation by ... More
A proteolytic transmembrane signaling pathway and resistance to beta-lactams in staphylococci.
Authors:Zhang HZ, Hackbarth CJ, Chansky KM, Chambers HF.
Journal:Science
PubMed ID:11239156
beta-Lactamase and penicillin-binding protein 2a mediate staphylococcal resistance to beta-lactam antibiotics, which are otherwise highly clinically effective. Production of these inducible proteins is regulated by a signal-transducing integral membrane protein and a transcriptional repressor. The signal transducer is a fusion protein with penicillin-binding and zinc metalloprotease domains. The signal for ... More
The solution structure and interactions of CheW from Thermotoga maritima.
Authors: Griswold Ian J; Zhou Hongjun; Matison Mikenzie; Swanson Ronald V; McIntosh Lawrence P; Simon Melvin I; Dahlquist Frederick W;
Journal:Nat Struct Biol
PubMed ID:11799399
Using protein from the hyperthermophile Thermotoga maritima, we have determined the solution structure of CheW, an essential component in the formation of the bacterial chemotaxis signaling complex. The overall fold is similar to the regulatory domain of the chemotaxis kinase CheA. In addition, interactions of CheW with CheA were monitored ... More