During checkout, this product may be reported as "Out of Stock" with an Estimated Availability date. The Actual Availability date for this product may be earlier. Send inquiries regarding Actual Availability date, including the catalog number, to discoverysciences@lifetech.com.

CellSensor® HSE-bla HeLa Cell Line

Catalog number: K1813

 Related applications: Pharma & Biopharma | Target & Lead Identification & Validation

Error loading your content!

  Catalog number
Select a plan
Unit size
Price ({{currency}}) Your price ({{currency}}) Availability Qty
{{product.sku}} {{product.sku}}
also known as {{product.formattedSku}} 
{{subscriptionDetails.selectedRatePlan.billingPeriod}} {{subscriptionDetails.selectedRatePlan.billingPeriod}} {{product.availability.message}}
Pro add-ons

Your on-site stock

›› {{supplyCenter.scName}}({{scProduct.stockOnHand}} In stock)
›› {{supplyCenter.scName}}(Out of stock)
›› {{supplyCenter.scName}}
This item is not currently available on-site. Depending on your Supply Center settings you may be able to add the item to cart above else use the Order Non-Stocked Items' tab on the Supply Center home page.
Back to top


Activation of the heat shock response⁄unfolded protein response (HSR⁄UPR) occurs in response to a diversity of chemical, environmental, and physiological stress conditions. Transcriptional regulation of the human HSR is mediated by a family of three heat shock transcription factors (HSFs), HSF-1, -2, and -4. Stress-induced activation of quiescent HSF monomers results in their trimerization and accumulation in the nucleus, wherein they bind to and upregulate transcription of target genes (e.g. molecular chaperones, certain proteases, and other stress response genes) harboring a heat shock element (HSE). Downstream expression of heat shock protein family members (e.g. Hsp90 and Hsp70) that function as molecular chaperones to guide conformational states of client proteins is essential to maintaining the health of cells and protecting them from various acute and chronic stress conditions. As a result, HSR activation may provide therapeutic benefit to certain types of tissue trauma (e.g. brain and heart ischemia) and neurodegenerative disorders (e.g. Huntington disease, Alzheimer disease, and Parkinson disease). Conversely, since aberrant expression of chaperones has been associated with tumorigenesis, compounds that down-regulate the HSR and chaperone levels could provide useful tools for combating cancer. To generate an effective readout for interrogating the HSR pathway, we engineered HeLa cervical cancer cells with an HSE driving beta-lactamase reporter gene expression (HSE-bla). A stably integrated pool of heat shock responsive cells was isolated by FACS and further evaluated using an inhibitor of Hsp90, 17-AAG. Hsp90 inhibition is known to upregulate HSF-1 activity leading to potent induction of the HSR, which can be readout using HSE-bla HeLa cells.
For Research Use Only. Not for use in diagnostic procedures.


System: CellSensor™
Readout: End Point
Reporter: BLA (Beta-Lactamase)
Cell Line: HeLa
Technique: FRET
Cell State: Dividing Cells
Antagonists: Quercetin
Gene Symbol: HSE
Product Size: 1 vial
Primary Agonist: 17-AAG
Detection Method: Fluorescent
Druggable Target: Kinases, Signaling Pathway

Contents & storage

CellSensor® HSE-bla HeLa cells are shipped on dry ice. Store in liquid nitrogen immediately upon receipt, or thaw for immediate use.


Manuals & protocols