pYES2.1 TOPO™ TA Yeast Expression Kit
Product Image
Invitrogen™

pYES2.1 TOPO™ TA Yeast Expression Kit

El kit de expresión pYES2.1 TOPO TA ofrece la clonación directa de un producto de PCR amplificado por Taq enMás información
Have Questions?
Número de catálogoCantidad
K41500120 reacciones
Número de catálogo K415001
Precio (MXN)
-
Cantidad:
20 reacciones
El kit de expresión pYES2.1 TOPO TA ofrece la clonación directa de un producto de PCR amplificado por Taq en un vector de expresión de Saccharomyces cerevisiae. El kit utiliza un vector pYES2.1/V5-His-TOPO ¤ activado por topoisomerasa I y linealizado para conseguir una clonación de 5 minutos en la mesa de trabajo y produce recombinantes de >85 %. El vector pYES2.1/V5-HIS-TOPO™ presenta:

• Origen de la replicación de 2µ para el mantenimiento de un número alto de copias para una selección auxotrófica en medio mínimo económico
• Etiquetas de epítopo C-terminal V5 y polihistidina (6xHis) para una detección y purificación eficaces
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Resistencia bacteriana a los antibióticosAmpicilina (AMPR)
Tipo de productoKit de expresión de levadura TA
Cantidad20 reacciones
VectorpYES, vectores TOPO-TA Cloning
Método de clonaciónTOPO-TA
Línea de productosTOPO, SÍ
PromotorGAL1
Etiqueta de proteínaEtiqueta His (6x), Etiqueta de epítopo V5
Unit SizeEach
Contenido y almacenamiento
Cada kit de expresión pYES2.1 TOPO™ TA contiene dos cajas. La caja pYES2.1 TOPO™ TA contiene todos los reactivos necesarios para la ligadura, incluidos un vector de pYES2.1/V5-His-TOPO™ activado por la topoisomerasa I de 200 ng, agua estéril, dNTP, tampón 10X para PCR, solución salina, cebadores y muestra de control, cebadores directos GAL1 e inversos V5 C-terminales para secuenciación o cribado por PCR, y un plásmido de control de expresión. Conservar a -20°C. La caja One Shot™ contiene todos los reactivos necesarios para la transformación, entre los que se incluyen veintiuna alícuotas de 50 μl de E. coli TOP10F´ químicamente competente, medio S.O.C. y plásmido de control superenrollado de pUC19. Conservar a -80°C. Todos los componentes se garantizan estables a la temperatura indicada durante 6 meses cuando se almacenan correctamente.

Preguntas frecuentes

Can I store my competent E. coli in liquid nitrogen?

We do not recommend storing competent E. coli strains in liquid nitrogen as the extreme temperature can be harmful to the cells. Also, the plastic storage vials are not intended to withstand the extreme temperature and may crack or break.

How should I store my competent E. coli?

We recommend storing our competent E. coli strains at -80°C. Storage at warmer temperatures, even for a brief period of time, will significantly decrease transformation efficiency.

What are the different kinds of media used for culturing Pichia pastoris and S. cerevisiae?

Following are the rich and minimal media used for culturing Pichia pastoris and S. cerevisiae:

Rich Media:
S. cerevisiae and Pichia pastoris
YPD (YEPD): yeast extract, peptone, and dextrose
YPDS: yeast extract, peptone, dextrose, and sorbitol

Pichia pastoris only
BMGY: buffered glycerol-complex medium
BMMY: buffered methanol-complex medium

Minimal Media (also known as drop-out media):
S. cerevisiae
SC (SD): Synthetic complete (YNB, dextrose (or raffinose or galactose), and amino acids)

Pichia pastoris
MGY: minimal glycerol medium
MD: minimal dextrose
MM: minimal methanol
BMGH: buffered minimal glycerol
BMMH: buffered minimal methanol

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Will the Saccharomyces cerevisiae alpha-factor secretion signal be recognized by Schizosaccharomyces pombe?

S. pombe cannot generate P factor when P factor is replaced for alpha in the alpha factor gene. It can, however, produce alpha factor when alpha is replaced for P in the P factor gene. This is negative evidence that S. pombe can process its own mating factor cleavage sites, but not all the cleavage sites of the S. cerevisiae alpha factor. It is better to use a more generic signal sequence (rather than a pre- pro- signal sequence such as alpha). If it is necessary to go the pre- pro- route, it is better to use the S. pombe P factor leader rather than the S. cerevisiae alpha leader.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Do you offer a TOPO-adapted yeast expression vector?

Yes, we do offer the pYES2.1/V5-His-TOPO vector, which is part of the pYES2.1 TOPO TA Expression Kit (Cat. No. K415001), for the direct cloning of Taq polymerase-amplified PCR products and regulated expression in Saccharomyces cerevisiae using galactose.

Citations & References (7)

Citations & References
Abstract
Identification of a family of animal sphingomyelin synthases.
Authors:Huitema K, Van Den Dikkenberg J, Brouwers JF, Holthuis JC,
Journal:EMBO J
PubMed ID:14685263
'Sphingomyelin (SM) is a major component of animal plasma membranes. Its production involves the transfer of phosphocholine from phosphatidylcholine onto ceramide, yielding diacylglycerol as a side product. This reaction is catalysed by SM synthase, an enzyme whose biological potential can be judged from the roles of diacylglycerol and ceramide as ... More
Cell cycle control of Cdc7p kinase activity through regulation of Dbf4p stability.
Authors:Oshiro G, Owens JC, Shellman Y, Sclafani RA, Li JJ
Journal:Mol Cell Biol
PubMed ID:10373538
'In Saccharomyces cerevisiae, the heteromeric kinase complex Cdc7p-Dbf4p plays a pivotal role at replication origins in triggering the initiation of DNA replication during the S phase. We have assayed the kinase activity of endogenous levels of Cdc7p kinase by using a likely physiological target, Mcm2p, as a substrate. Using this ... More
Regulation of stress response signaling by the N-terminal dishevelled/EGL-10/pleckstrin domain of Sst2, a regulator of G protein signaling in Saccharomyces cerevisiae.
Authors: Burchett Scott A; Flanary Paul; Aston Christopher; Jiang Lixin; Young Kathleen H; Uetz Peter; Fields Stanley; Dohlman Henrik G;
Journal:J Biol Chem
PubMed ID:11940600
'All members of the regulator of G protein signaling (RGS) family contain a conserved core domain that can accelerate G protein GTPase activity. The RGS in yeast, Sst2, can inhibit a G protein signal leading to mating. In addition, some RGS proteins contain an N-terminal domain of unknown function. Here ... More
Genetic screens in yeast to identify mammalian nonreceptor modulators of G-protein signaling.
Authors:Cismowski MJ, Takesono A, Ma C, Lizano JS, Xie X, Fuernkranz H, Lanier SM, Duzic E
Journal:Nature Biotechnology
PubMed ID:10471929
We describe genetic screens in Saccharomyces cerevisiae designed to identify mammalian nonreceptor modulators of G-protein signaling pathways. Strains lacking a pheromone-responsive G-protein coupled receptor and expressing a mammalian-yeast Galpha hybrid protein were made conditional for growth upon either pheromone pathway activation (activator screen) or pheromone pathway inactivation (inhibitor screen). Mammalian ... More
Pheromone-dependent Ubiquitination of the Mitogen-activated Protein Kinase Kinase Ste7.
Authors: Wang Yuqi; Dohlman Henrik G;
Journal:J Biol Chem
PubMed ID:11864977
Many cell signaling pathways are regulated by phosphorylation, ubiquitination, and degradation of constituent proteins. As with phosphorylation, protein ubiquitination can be reversed, through the action of ubiquitin-specific processing proteases (UBPs). Here we have analyzed 15 UBP disruption mutants in the yeast Saccharomyces cerevisiae and identified one (ubp3Delta) that acts specifically ... More