GeneRacer™ Kit with SuperScript™ III RT and TOPO TA Cloning™ Kit for Sequencing
GeneRacer™ Kit with SuperScript™ III RT and TOPO TA Cloning™ Kit for Sequencing
Invitrogen™

GeneRacer™ Kit with SuperScript™ III RT and TOPO TA Cloning™ Kit for Sequencing

El kit GeneRacer™ proporciona un método para obtener extremos 5' y 3' de longitud completa de ADNc mediante una secuenciaMás información
Have Questions?
Número de catálogoCantidad
L1502011 Kit
Número de catálogo L150201
Precio (MXN)
-
Cantidad:
1 Kit
El kit GeneRacer™ proporciona un método para obtener extremos 5' y 3' de longitud completa de ADNc mediante una secuencia de ADNc conocida procedente de etiquetas de secuencias expresadas (EST), ADNc sustraído, visualización diferencial o detección de bibliotecas. El kit garantiza la amplificación de solo los transcritos de longitud completa mediante la eliminación de mensajes truncados del proceso de amplificación. Los productos de reacción en cadena de la polimerasa (PCR) RACE se pueden clonar con rapidez y facilidad mediante el uso del kit de clonación de PCR Zero Blunt™ TOPO™ o el kit TOPO TA Cloning™ para secuenciación (productos de PCR con salientes 3'-A). Mediante el uso de los protocolos facilitados, los extremos de ADNc de transcritos poco frecuentes (30 copias/célula) y largos (9 kb) se pueden amplificar y secuenciar con 1 µg de ARN total como material de partida. Con el kit GeneRacer™ puede:

• Genera ADNc de transcritos de al menos 10 kb de longitud
• Obtiene el extremo 5´ de longitud completa de transcritos poco frecuentes en menos de 30 copias por célula
• Clonar los extremos 5´ y 3´ de longitud completa para construir la secuencia de ADNc completaSuperScript™ III RT
El kit GeneRacer™ está disponible con la transcriptasa inversa (RT) SuperScript™ III para obtener una amplificación mejorada del extremo 5 ´ de longitud completa del ARNm largo y complejo. La parte de ARNasa H de RT SuperScript™ III se ha mutado para evitar la disociación de ARNm durante la síntesis de ADNc. Esto aumenta el tamaño y la producción de ADNc. RT SuperScript™ III es más termoestable que las RT naturales. Esto permite la transcripción inversa a altas temperaturas, lo que relaja la estructura secundaria de plantillas complejas y permite que la síntesis de ADNc se complete.Funcionamiento del kit GeneRacer™
El kit GeneRacer™ garantiza que solo se amplifican los transcritos que contienen extremos de ADNc de longitud completa (consulte la figura). El avanzado protocolo comienza en el nivel de ARN y se centra específicamente solo en ARNm con caperuza 5´. En los pasos siguientes, se retira la caperuza y se sustituye con el oligonucleótido de ARN GeneRacer™. Durante la transcripción inversa, la secuencia de oligonucleótido de ARN GeneRacer™ se incorpora al ADNc. Solo el ADNc que se haya transcrito de manera inversa completamente contendrá esta secuencia conocida. A continuación se realiza una PCR 5´ RACE mediante el uso del primer de 5´ GeneRacer™ específico de la secuencia de oligonucleótido de ARN GeneRacer™ y un primer específico del gen. El resultado es ADN amplificado que contiene la secuencia de ADNc de 5´ de longitud completa.Sensibilidad y longitud
Con el fin de demostrar la capacidad del kit GeneRacer™ para capturar el ADNc de 5 ´ de longitud completa, se han amplificado los extremos 5 ´ de genes con sitios conocidos de inicio de transcripciones. Comenzando con ARN total y siguiendo el protocolo de GeneRacer™, se amplificaron tanto los transcritos largos (10 kb) como los mensajes poco frecuentes presentes en el 0,01 % o 30 copias por célula (consulte la figura).
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Cepa bacteriana o de levaduraTOP10
Método de clonaciónTOPO TA
Para utilizar con (aplicación)Transcripción inversa
IncluyeMódulo GeneRacer: 2 x 1,5 ml de agua estéril, 24 μl de RNaseOut, 6 μl de cada fosfatasa intestinal de Calf (CIP), tampón CIP, pirofosfatasa de ácido de tabaco (TAP), tampón TAP 10X, ligasa de ARN T4, tampón de ligasa de ARN 10X T4, y 10 mm ATP, 6 x 250 ng de oligonucleótido de ARN GeneRacer, 2 x 1 ml de fenol/cloroformo, 36 μl de glucógeno de mejillón, 200 μl de acetato de sodio (3M), 225 μl de cada cebador GeneRacer 5 ', 5 ' cebadores anidados, 3 ' cebadores, y 3 ' cebadores anidados, 20 μl de ARN total de control de HeLa (500 ng/μl), 15 μl de cada cebador de control A y cebador de control B.1; módulo RT de SuperScript III: 6 μl de transcriptasa inversa SuperScript III (200 U/μl),15 μl de tampón de primera cadena 5X, 24 μl de DTT (0,1M), 6 μl de RNasaH (2 U/μl), 6 μl de cebadores aleatorios (100 ng/μl), 6μl de cebador de oligo(dT) de GeneRacer (900 ng/μl), 6 μl de mezcla dNTP (10 mmcada una), 10 de S.N.A.P. Columnas, kit de clonación TOPO TA para secuenciación (-20 °C), suficientes reactivos y una inyección TOP10 químicamente competente E. coli
Línea de productosGeneRacer, SuperScript, TA Cloning, TOPO
Tipo de productoKit de clonación
Cantidad1 Kit
VectorpCR4-TOPO TA
FormatoKit
Unit SizeEach
Contenido y almacenamiento
Almacene cada módulo como se indica:

Módulo GeneRacer™ (–20 °C):

• 2 × 1,5 ml de agua esterilizada

• 24 µl de RNaseOut™

• 6 µl de cada fosfatasa intestinal de Calf (CIP), tampón CIP, pirofosfatosa de ácido de tabaco (TAP), tampón TAP 10X, ligasa de ARN T4, tampón de ligasa de ARN 10X T4, y 10 mm ATP

• 6 × 250 ng de oligonucleótido de ARN de GeneRacer™

• 2 × 1 ml fenol/cloroformo

• 36 µl glucógeno de mejillón

• 200 µl de acetato de sodio (3 M)

• 225 µl de cada cebador de 5 ′ de GeneRacer™, 5 ′ cebador anidado, 3 ′ cebador anidado y 3 ′ cebador anidado

• 20 µl de control de ARN total de HeLa (500 ng/µl)

• 15 µl cada cebador de control A y cebador de control B.1

Módulo RT de SuperScript™ III (-20 °C)

• 6 µl de transcriptasa inversa SuperScript™ III (200 U/µl)

• 24 µl 5X tampón de primera cadena

• 15 µl DTT (0,1 M)

• 6 µl RNasaH (2 U/µl)

• 6 µl de cebadores aleatorios (100 ng/µl)

• 6 µl de cebador de oligo(dT) de GeneRacer™ (900 ng/µl)

• 6 µl de mezcla dNTP (10 mm cada uno)

10 S.N.A.P.™ Columnas (a temperatura ambiente)

Kit de clonación TOPO TA™ para secuenciación (-20 °C)

• Reactivos suficientes y una inyección E. coli químicamente competente One Shot™ TOP10 (almacenar a -80 °C) para clonar 10 productos de PCR GeneRacer™; Módulo GeneRacer (-20 °C), módulo SuperScript III RT (-20 °C), E. coli competente (almacenar a -80 °C), S.N.A.P. Columnas (a temperatura ambiente), kit de clonación de TA TOPO para secuenciación (-20 °C)

Preguntas frecuentes

How long can I store the cDNA from my reverse transcription step?

You can store your cDNA at 2-6 degrees C for up to 24 hours. For long-term storage, store the cDNA at -15 to -25 degrees C and add EDTA to a final concentration of 1 mM to prevent degradation.

I'm getting PCR products from my 5' RACE, but they are not full length. What should I do?

The GeneRacer method is designed to ensure that only full-length messages are ligated to the GeneRacer RNA Oligo and PCR amplified after cDNA synthesis. It is highly recommended that you clone your RACE products and analyze at least 10-12 colonies to ensure that you isolate the longest message. Many genes do not have only one set of transcription start sites but rather multiple transcription start sites spanning sometimes just a few or other times a hundred or even more bases. Cloning of the RACE products and analyzing multiple colonies ensues that you detect the diversity of the heterogeneous transcription start sites of your gene. It is also possible that you might obtain PCR products that may not represent the full-length message for your gene. PCR products that do not represent full-length message may be obtained because:

-RNA degradation after the CIP reaction creates new truncated substrates with a 5' phosphate for ligation to the GeneRacer RNA Oligo. Be sure to take precautions to ensure that the RNA is not degraded.
-CIP dephosphorylation was incomplete. Increase the amount of CIP in the reaction or decrease the amount of RNA.
-PCR yielded a PCR artifact and not true ligation product. Optimize your PCR using the suggestions described above.

I'm seeing RACE PCR artifacts in my GeneRacer experiment. What am I doing wrong?

RACE PCR artifacts or nonspecific PCR bands can result from one or more of the following:

-Nonspecific binding of GSPs to other cDNAs resulting in the amplification of unrelated products as well as desired products.
-Nonspecific binding of GeneRacer primers to cDNA resulting in PCR products with GeneRacer primer sequence on both ends of the PCR product.
-RNA degradation.
-Contamination of PCR tubes or reagents.
Note: Artifacts usually result from less than optimal PCR conditions and can be identified in negative control PCR.

I'm getting unexpected bands after electrophoretic analysis of my amplified RT-PCR products. Can you please offer some suggestions?

Please see the following causes and suggestions:
Contamination by genomic DNA or an unexpected splice variant - Pretreat RNA with DNase I, amplification grade (Cat. No 18068015).
Design primers that anneal to sequences in exons on both sides of an intron or at the exon/exon boundary of the mRNA to differentiate between amplified cDNA and potential contaminating genomic DNA.
To test if products were derived from DNA, perform a minus RT control.
Nonspecific annealing of primers - Vary the PCR annealing conditions.
Use a hot-start PCR polymerase.
Optimize magnesium concentration for each template and primer combination.
Primers formed dimers - Design primers without complementary sequences at the 3' ends.

I'm getting no bands after electrophoretic analysis of my amplified RT-PCR products. Can you please offer some tips?

Please see the following causes and suggestions:

Procedural error in first-strand cDNA synthesis - Use high-quality RNA as a control to verify the efficiency of the first-strand reaction.
RNase contamination - Add control RNA to sample to determine if RNase is present in the first-strand reaction. Use an RNase inhibitor in the first-strand reaction.
Polysaccharide co-precipitation of RNA - Precipitate RNA with lithium chloride to remove polysaccharides, as described in Sambrook et al.
Target mRNA contains strong transcriptional pauses - Use random hexamers instead of oligo(dT) in the first-strand reaction, increase the temperature, and use PCR primers closer to the 3' terminus of the target cDNA.
Too little first-strand product was used in PCR - Use up to 10% of first-strand reaction per 50 mL PCR.
Gene-specific primer was used for first-strand synthesis - Try another set of GSP or switch to oligo(dT). Make sure the GSP is the antisense of the sequence.
Inhibitors of RT present - Remove inhibitors by ethanol precipitation of mRNA preparation before the first-strand reaction. Include a 70% (v/v) ethanol wash of the mRNA pellet. Note: inhibitors of RT include SDS, EDTA, guanidinium salts, formamide, sodium pyrophosphate, and spermidine.
RNA has been damaged or degraded - Ensure that high-quality, intact RNA is being used.
Annealing temperature is too high - Decrease temperature as necessary and/or use touchdown PCR.

Citations & References (16)

Citations & References
Abstract
A novel notch protein, N2N, targeted by neutrophil elastase and implicated in hereditary neutropenia.
Authors:Duan Z, Li FQ, Wechsler J, Meade-White K, Williams K, Benson KF, Horwitz M,
Journal:Mol Cell Biol
PubMed ID:14673143
Mutations in ELA2, encoding the human serine protease neutrophil elastase, cause cyclic and severe congenital neutropenia, and recent evidence indicates that the mutations alter the membrane trafficking of neutrophil elastase. These disorders feature impaired bone marrow production of neutrophils along with excess monocytes-terminally differentiated lineages corresponding to the two alternative ... More
A gene encoding a protein modified by the phytohormone indoleacetic acid.
Authors: Walz Alexander; Park Seijin; Slovin Janet P; Ludwig-Müller Jutta; Momonoki Yoshie S; Cohen Jerry D;
Journal:Proc Natl Acad Sci U S A
PubMed ID:11830675
'We show that the expression of an indole-3-acetic acid (IAA)-modified protein from bean seed, IAP1, is correlated to the developmental period of rapid growth during seed development. Moreover, this protein undergoes rapid degradation during germination. The gene for IAP1, the most abundant protein covalently modified by IAA (iap1, GenBank accession ... More
Gata factor translation is the final downstream step in the amino acid/tor-mediated vitellogenin gene expression in the anautogenous mosquito aedes aegypti.
Authors:Park JH, Attardo GM, Hansen IA, Raikhel AS,
Journal:J Biol Chem
PubMed ID:16490782
'Ingestion of blood is required for vector mosquitoes to initiate reproductive cycles determining their role as vectors of devastating human diseases. Nutritional signaling plays a pivotal role in regulating mosquito reproduction. Transcription of yolk protein precursor genes is repressed until mosquitoes take blood. Previously, we have shown that to signal ... More
Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133.
Authors:Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA, Usenko JK, Costa C, Zhang F, Guo X, Rafii S,
Journal:Blood
PubMed ID:14630820
'AC133 is a member of a novel family of cell surface proteins with 5 transmembrane domains. The function of AC133 is unknown. Although AC133 mRNA is detected in different tissues, its expression in the hematopoietic system is restricted to CD34+ stem cells. AC133 is also expressed on stem cells of ... More
Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells.
Authors:Tone M, Tone Y, Adams E, Yates SF, Frewin MR, Cobbold SP, Waldmann H,
Journal:Proc Natl Acad Sci U S A
PubMed ID:14608036
'Recently, agonist antibodies to glucocorticoid-induced tumor necrosis factor receptor (GITR) (tumor necrosis factor receptor superfamily 18) have been shown to neutralize the suppressive activity of CD4+CD25+ regulatory T cells. It was anticipated that this would be the role of the physiological ligand. We have identified and expressed the gene for ... More