Qdot™ 585 Streptavidin Conjugate
Qdot™ 585 Streptavidin Conjugate
Invitrogen™

Qdot™ 585 Streptavidin Conjugate

Qdot™ 585 Streptavidin-Konjugat enthält ein Biotin-bindendes Protein (Streptavidin), das kovalent an einen fluoreszierenden Marker (Qdot™ Nanokristall) gebunden ist. Streptavidin besitztWeitere Informationen
Have Questions?
Ansicht ändernbuttonViewtableView
KatalognummerMenge
Q10111MP200 μl
Q10113MP50 μl
Katalognummer Q10111MP
Preis (EUR)
706,65
Exklusiv online
942,00
Ersparnis 235,35 (25%)
Each
Zum Warenkorb hinzufügen
Menge:
200 μl
Preis (EUR)
706,65
Exklusiv online
942,00
Ersparnis 235,35 (25%)
Each
Zum Warenkorb hinzufügen
Qdot™ 585 Streptavidin-Konjugat enthält ein Biotin-bindendes Protein (Streptavidin), das kovalent an einen fluoreszierenden Marker (Qdot™ Nanokristall) gebunden ist. Streptavidin besitzt eine sehr hohe Bindungsaffinität für Biotin. Streptavidin-Konjugate werden häufig gemeinsam mit Biotin-Konjugaten zum spezifischen Nachweis verschiedenster Proteine, Proteinmotive, Nukleinsäuren und anderer Moleküle verwendet (z. B. kann ein an eine Protein-Zielstruktur gebundener biotinylierter Primär-Antikörper mithilfe von fluoreszenzmarkiertem Streptavidin nachgewiesen werden). Ähnliche Strategien kommen in zahlreichen Nachweisprotokollen zum Einsatz, einschließlich Western Blots, Durchflusszytometrie, Bildgebung und Mikroskopie sowie Mikrotiterplatten-Assays. Zudem gelangen sie bei Aufreinigungen für gezielte Fraktionierungen zur Anwendung. Qdot™ Nanokristall-Konjugate werden als 1 µM-Lösungen angeboten.

Wichtige Merkmale von Qdot™ Streptavidin-Konjugaten:
Streptavidin Qdot™ 585 Konjugat hat ein Emissionsmaximum von ∼ 585 nm
Ungefähr 5 bis 10 Streptavidine pro Qdot™ Nanokristall
Extrem photostabil und hell fluoreszierend
Effizient anregbar durch einlinige Anregungsquellen
Enge Emission, große Stokes-Verschiebung
Erhältlich in mehreren Farben
Ideal für Western Blots, Durchflusszytometrie, Bildgebung und Mikroskopie, Mikrotiterplatten-Assays und mehr

Eigenschaften von Qdot™ Nanokristallen
Das Qdot™ Streptavidin-Konjugat hat die Größe eines großen Makromoleküls oder Proteins (∼ 15 bis 20 nm) und stellt die hellste Klasse von Streptavidin-Nachweisreagenzien dar. Qdot™ Streptavidin-Konjugate werden aus nanometergroßen Kristallen eines Halbleitermaterials (CdSe) hergestellt, das mit einer zusätzlichen Halbleiterhülle (ZnS) zur Verbesserung der optischen Eigenschaften des Materials beschichtet ist. Die Qdot™ 705 und Qdot™ 800 Streptavidin-Konjugate mit CdSeTe werden auf ähnliche Weise hergestellt. Dieses Kern-Hülle-Material wird wiederum mit einer Polymerhülle beschichtet, die eine Konjugation der Materialien mit biologischen Molekülen ermöglicht und ihre optischen Eigenschaften erhält.

Es sind weitere fluoreszierende Konjugate von Streptavidin verfügbar
Wir bieten verschiedene andere Qdot™ Farben an. Oder probieren Sie das Qdot™ Streptavidin Sampler-Kit aus, das Qdot™ Streptavidin-Konjugate in sechs Farben enthält (525, 565, 585, 605, 655 und 705). Zusätzlich zu den Nanokristall-Konjugaten bieten wir eine große Auswahl an Streptavidin-Konjugaten, die mit Alexa Fluor™ Farbstoffen, Oregon Green™ Farbstoff, Enzym-Konjugaten und traditionellen Fluorophoren wie Texas Red™ Farbstoff, Fluorescein (FITC) und mehr konjugiert sind.

Erfahren Sie mehr über biotinylierte Konjugate
Wir bieten eine umfangreiche Palette an biotinylierten Konjugaten für die Verwendung in Biotin-Streptavidin-Nachweisstrategien.
• Verwenden Sie die Suchhilfe für Primär-Antikörper für die Suche nach biotinylierten Primär-Antikörpern
• Verwenden Sie die Auswahlhilfe für Sekundär-Antikörper für die Suche nach biotinylierten Sekundär-Antikörpern und biotinylierten Anti-Farbstoff- und Anti-Hapten-Antikörpern

Blockierung von endogenem Biotin
Natürlich vorkommende Biotine können Biotin-Streptavidin-Nachweismethoden beeinträchtigen. Nutzen Sie für Experimente mit fixierten und permeabilisierten Zellen unser Blockier-Kit für endogenes Biotin, um solche Interferenzen auf ein Minimum zu beschränken.

Nur für Forschungszwecke. Nicht für therapeutische oder diagnostische Zwecke an Tieren und Menschen vorgesehen.

Verwandte Links:

Erfahren Sie mehr über Avidin-Biotin-Nachweismethoden

Erfahren Sie mehr über Qdot™ Nanokristalle
Nur für Forschungszwecke. Nicht zur Verwendung bei diagnostischen Verfahren.
Specifications
Konzentration1 μM
ProdukttypStreptavidin-Konjugat (fluoreszierend)
Menge200 μl
VersandbedingungRaumtemperatur
KonjugatQdot 585
FormFlüssig
ProduktlinieQdot
Unit SizeEach
Inhalt und Lagerung
Im Kühlschrank lagern (2 bis 8 °C).

Häufig gestellte Fragen (FAQ)

I am getting very high background with my Qdot streptavidin conjugate. Do you have any suggestions?

Here are some suggestions: Use the Qdot Incubation Buffer (Cat. No. Q20001MP). The included buffer is formulated specifically for improved signal-to-background ratios in most immunolabeling applications using the Qdot streptavidin conjugates. Alternate buffers may result in more variable staining and, in particular, may increase background staining. However, some specific applications may require other buffer conditions. Please see the protocol "Double-labeling Using Qdot Streptavidin conjugates."
Determine if the sample has a high level of endogenous biotin. Block the sample using an avidin-biotin pre-blocking step.
If you have used the Qdot Incubation Buffer and still get high nonspecific background, then it may be necessary to check other steps of your procedure. Blocking the sample with BSA or normal animal serum will generally decrease nonspecific binding of both antibodies and Qdot streptavidin conjugates. It is a good practice to dilute your primary and secondary antibodies in the blocking buffer. Some tissues such as spleen and kidney sections may contain endogenous biotin, which may contribute to non-specific signal. Endogenous biotin can be blocked with an avidin/biotin blocking kit (Cat. No. E21390).
Grainy staining or clumps of fluorescent material appear in the background.
Occasionally the BSA within the Qdot Incubation Buffer shows slight aggregation over time. It is necessary to remove this aggregate prior to labeling the sample with the Qdot streptavidin conjugate. Spin down the incubation mixture before addition to the sample. This can be accomplished by spinning the samples in a benchtop centrifuge (Eppendorf 5415) at 5,000 x g for 2 minutes. The material can also be passed over a 0.2 µm spin filter unit before you add it to the sample for staining to remove microscopic precipitates. If you are using a buffer that is different than the Qdot Incubation Buffer, this behavior can often be attributed to higher levels of NaCl or other salts in the incubation buffer, and may not be easily fixed with filtration. In this case, reduce the overall salt concentration.
Optimize concentration of biotinylated secondary antibodies.
Optimizing specific signal can often be achieved by adjusting the level of biotinylated antibody used instaining. High levels of biotinylated antibody are necessary to obtain specific labeling, but overly high levels will contribute to nonspecific binding of the antibody to the sample. Nonspecifically bound biotinylated antibody will bind to the Qdot streptavidin conjugate, resulting in higher staining of the background.
Optimize concentration of Qdot streptavidin conjugate.
Just as titration of primary and secondary antibodies is necessary to achieve optimal specific signal in immunolabeling applications, the level of the final probe should be optimized for each conjugate. In general, concentrations at or slightly below saturation should have the optimal signal-to-background ratio, while concentrations substantially higher than saturation will compromise the assay with higher background levels.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I am getting no signal with my Qdot streptavidin conjugate. What should I do?

Here are some suggestions:

Confirm imaging/detection setup suitability.
Make sure that you are using an appropriate filter set to detect the signal. Please consult Table 1 in the Qdot Biotin User Manual for a list of appropriate and optimal filters.
Check to see that Qdot conjugate is fluorescing using an alternative light source.
Qdot conjugates will normally fluoresce brightly under a hand-held ultraviolet lamp (long wave, such as the type used to visualize ethidium bromide on agarose gels). Although we have not seen pronounced loss of fluorescence of these materials under any storage conditions that we have investigated, we have not been able to examine all storage conditions. If the Qdot product does not appear to fluoresce under the long wave UV excitation, please contact Technical Support at techsupport@qdots.com. For a microscope, perform a spot test: place a small droplet (2 to 5 µL) of the quantum dot solution onto a clean slide (no coverslip) and examine under the appropriate filter set at low magnification.
Confirm the specificity and titer of primary antibody.
Make sure the antibody will recognize the intended targets. Make sure there is sufficient primary antibody bound to the targets. This verification can be performed by ELISA-based capture of the antigen of interest, or by other techniques that can be found in lab manuals such as the Current Protocols in Immunology.
For Qdot streptavidin conjugates, confirm biotinylation of antibody.
Make sure your antibodies are effectively biotinylated. It may be necessary to independently adjust the concentration of both the primary and secondary antibodies used in the assay to obtain optimal signal and minimal background.
PAP pen ink may quench signal.
Use an alternate method for isolating target areas on the slide. If your protocol requires the use of a PAP pen, we recommend the ImmEdge Hydrophobic Barrier Pen (Cat. No. H-4000) from Vector Labs.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What is the best way to remove white precipitate from my ITK Qdot nanocrystals?

Spinning your ITK Qdot nanocrystals at approximately 3,000 rpm for 3-5 minutes should remove the white precipitate from the supernatant. Use the supernatant immediately.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I see a white precipitate in my ITK Qdot nanocrystals; should I be concerned?

The precipitate in the organic ITK Qdot nanocrystals occurs with some frequency. The ITK Qdot nanocrystals sometimes include impurities that show as a white precipitate.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Why do my Qdot nanocrystals appear to be blinking?

Blinking is an inherent property of quantum dots; in fact, all single-luminescent molecules blink, including organic dyes. The brightness and photostability of Qdot nanocrystals makes the blinking more visibly apparent. Under higher energy excitation, Qdot nanocrystals blink even faster.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Zitierungen und Referenzen (18)

Zitierungen und Referenzen
Abstract
Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers.
Authors:Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, Hombrink P, Castermans E, Thor Straten P, Blank C, Haanen JB, Heemskerk MH, Schumacher TN,
Journal:Nat Methods
PubMed ID:19543285
'The use of fluorescently labeled major histocompatibility complex multimers has become an essential technique for analyzing disease- and therapy-induced T-cell immunity. Whereas classical major histocompatibility complex multimer analyses are well-suited for the detection of immune responses to a few epitopes, limitations on human-subject sample size preclude a comprehensive analysis of ... More
Single-molecule quantum-dot fluorescence resonance energy transfer.
Authors:Hohng S, Ha T
Journal:Chemphyschem
PubMed ID:15884082
'Colloidal semiconductor quantum dots are promising for single-molecule biological imaging due to their outstanding brightness and photostability. As a proof of concept for single-molecule fluorescence resonance energy transfer (FRET) applications, we measured FRET between a single quantum dot and a single organic fluorophore Cy5. DNA Holliday junction dynamics measured with ... More
Analysis of UV-excited fluorochromes by flow cytometry using near-ultraviolet laser diodes.
Authors:Telford WG
Journal:Cytometry A
PubMed ID:15351984
'INTRODUCTION: Violet laser diodes have become common and reliable laser sources for benchtop flow cytometers. While these lasers are very useful for a variety of violet and some ultraviolet-excited fluorochromes (e.g., DAPI), they do not efficiently excite most UV-stimulated probes. In this study, the next generation of InGaN near-UV laser ... More
The development of quantum dot calibration beads and quantitative multicolor bioassays in flow cytometry and microscopy.
Authors:Wu Y, Campos SK, Lopez GP, Ozbun MA, Sklar LA, Buranda T
Journal:Anal Biochem
PubMed ID:17397793
'The use of fluorescence calibration beads has been the hallmark of quantitative flow cytometry. It has enabled the direct comparison of interlaboratory data as well as quality control in clinical flow cytometry. In this article, we describe a simple method for producing color-generalizable calibration beads based on streptavidin functionalized quantum ... More
Quantum dot self-assembly for protein detection with sub-picomolar sensitivity.
Authors:Soman CP, Giorgio TD,
Journal:Langmuir
PubMed ID:18335969
'A novel approach to sensitive and rapid antigen detection is described. In the presence of a specific antigen, quantum dot-antibody conjugates rapidly self-assemble into agglomerates that are typically more than 1 order of magnitude larger than their individual components. The size distribution of the agglomerated colloids depends on, among other ... More