Kits de ensayo de alta sensibilidad (HS), amplio rango (BR) y rango extendido (XR) de ARN Qubit™.
Kits de ensayo de alta sensibilidad (HS), amplio rango (BR) y rango extendido (XR) de ARN Qubit™.
Invitrogen™

Kits de ensayo de alta sensibilidad (HS), amplio rango (BR) y rango extendido (XR) de ARN Qubit™.

Los kits permiten la detección rápida y sensible de ARN de baja y alta abundancia y pueden distinguir entre ARN y ADN, proteínas y nucleótidos libres.
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoCantidadensayo
Q10211500 ensayosCuantificación de ARN, rango amplio
Q10210100 ensayosCuantificación de ARN, rango amplio
Q33223100 ensayosCuantificación de ARN, rango extendido
Q33224500 ensayosCuantificación de ARN, rango extendido
Q32852100 ensayosCuantificación de ARN, alta sensibilidad
Q32855500 ensayosCuantificación de ARN, alta sensibilidad
Número de catálogo Q10211
Precio (MXN)
-
Cantidad:
500 ensayos
ensayo:
Cuantificación de ARN, rango amplio
Obtenga una cuantificación exacta y precisa del ARN con los kits de ensayo de ARN HS, BR y XR Qubit. Estos kits de cuantificación de ARN permiten la detección rápida y selectiva de muestras de ADN de baja y alta abundancia, y pueden distinguir ARN de ADN, proteínas y nucleótidos libres. Los contaminantes, como sales, disolventes o detergentes, se toleran bien.
Los kits de ensayo de ARN de Qubit HS, BR y XR, diseñados para su uso con fluorímetros de Qubit, son altamente selectivos para ARN sobre ADN, proteínas y nucleótidos libres. Todos los kits proporcionan soluciones para el reactivo de ensayo concentrado, el tampón de dilución y las seroalbúminas bovinas (ARN) prediluidas. Basta con diluir el reactivo mediante el tampón proporcionado, añadir la muestra (cualquier volumen entre 1 µl y 20 µl es aceptable) y leer la concentración con un fluorímetro de Qubit.

Kit de ensayos de ARN HS QBit
El kit de ensayo de ARN HS QBit (alta sensibilidad), cuando se utiliza con el fluorímetro QBit, proporciona un método preciso y selectivo para la cuantificación de muestras de ARN de baja abundancia.  Según el volumen de la muestra, el kit de ensayos está diseñado para ser exacto para concentraciones iniciales de muestras de ARN de 0,2 a 200 ng/µl, lo que proporciona un intervalo de detección de 4 a 200 ng.

Kit de ensayos de ARN BR de Qubit
El kit de ensayo de ARN BR de Qubit (gama amplia), cuando se utiliza con el fluorómetro de Qubit, proporciona un método preciso y selectivo para la cuantificación de muestras de ARN.  Según el volumen de la muestra, el kit de ensayos está diseñado para ser exacto para concentraciones iniciales de muestras de ARN de 0,5 a 1200 ng/µl, lo que proporciona un intervalo de detección de 10 a 1200 ng.

Kit de ensayos de ARN XR de Qubit
El kit de ensayo de ARN XR de Qubit (gama ampliada), diseñada para su uso con los fluorímetros Qubit 4 y Qubit Flex, proporciona un método preciso y selectivo para la cuantificación de muestras de ARN. Según el volumen de la muestra, el kit de ensayo está diseñado para ser exacto para concentraciones iniciales de muestras de ARN de 5 a 20 000 ng/µl, lo que proporciona un intervalo de detección de 100 a 20 000 ng.

Notas
• Los kits de ensayo HS y BR de ARN de Qubit se pueden utilizar con cualquier fluorímetro Qubit
• Los kits de ensayo XR de ARN de Qubit están diseñados para utilizarse únicamente con fluorímetros Qubit 4 o Qubit Flex
• Utilícelos con tubos para PCR de pared fina, transparentes y de 0,5 ml (n.º de referencia Q32856) para el fluorímetro Qubit 4 y las tiras de tubos de 8 x 200 µl (n.º de referencia Q33252) para el fluorímetro Qubit Flex

For Research Use Only. Not for use in diagnostic procedures.
Especificaciones
ensayoCuantificación de ARN, rango amplio
Excitación/emisión644/673
Para utilizar con (equipo)Fluorímetro Qubit
N.º de reacciones500 reacciones
Línea de productosQuant-iT
Intervalo de cuantificación10-1200 ng
Cantidad500 ensayos
Condiciones de envíoTemperatura ambiente
Método de detecciónFluorescencia
Unit SizeEach

Preguntas frecuentes

I'm seeing other kit-related problems besides the "Standards incorrect" message with my Qubit assay. What do you suggest I try?

Here are several suggestions:

1.View the raw fluorescence value (RFU) for the standards under “Check Standards” or “Check Calibration”. Confirm that the values for the samples fall between the values of the standards (or a little above the highest standard). If they do not, the sample is out of the accurate range of the assay. Refer to the confidence ranges for each assay in the product manuals. The readout in the assay will be to 2 significant figures instead of 3 if the assay sample is out of the high confidence range.
To bring the sample into the accurate range, dilute the sample or use more or less of it (for example, 10 µL instead of 2 µL if the sample reads low).

2.Check for temperature issues: The assay is temperature sensitive and the fluorescent signal can decrease at higher temperatures. Temperature fluctuations between samples, or between samples and standards, can cause problems. Make sure that the buffer and Qubit reagent in DMSO are at room temperature. The buffer and Qubit reagent should be stored at room temperature, not in the refrigerator. Even after 2-3 hours at room temperature, buffer previously stored at 4°C can remain below room temperature. Make sure your samples and working solution are not too warm (including those straight from a centrifuge). Samples kept in the Qubit instrument too long or read multiple times can warm up. If you want to perform multiple readings of a single tube, you should remove the tube from the instrument and let it equilibrate to room temperature for 30 seconds before taking another reading. Also, do not hold tubes in your hand for very long before reading them in the instrument, since this can warm the sample, resulting in a low reading.

3.Ensure that you have prepared the Qubit working solution correctly (1:200 dilution using the buffer provided in the kit). Ensure that you have prepared the standard tubes correctly (10 µL of each standard in 190 µL of the working solution). Ensure that the tubes are filled with at least 200 µL (both standards and samples).

4.Ensure that the reagents and standards you are using are less than 6 months old, and that the standards have been stored correctly. The Qubit reagent stock solution should be protected from light as much as possible.

5.Ensure that you have selected the correct assay on the Qubit Fluorometer for the Qubit assay you are performing.

6.Ensure that the lid is completely closed when reading standards and samples.

7.Use recommended tubes (both so the tube does not obstruct the lid, and for optical clarity). Some types of tubes can have high autofluorescence that will affect the assay.

8.Did you enter the number of microliters of stock you pipetted into the working solution into the Qubit instrument? If so, the reading after giving the Qubit Fluorometer this information is the concentration of your stock solution. If you did not, the reading you got is for the concentration in the assay tube (the tube you put into the Qubit Fluorometer) and not your stock solution.

9.If you are comparing Qubit assay results to concentration obtained by UV absorbance, and the concentration based on absorbance is significantly higher, it may be because of nucleic acid or protein contamination. The Qubit assays are much more specific for DNA, RNA, or protein than absorbance readings.

The value is decreasing over time when using the Qubit Fluorometer. What could be causing this?

Please see our suggestions below:

  • Make sure that you take your reading only after incubating for at least 2 minutes (15 minutes for protein).
  • If you leave the assay tube in the Qubit Fluorometer and take multiple readings, the readings will go down as the tube heats up inside the instrument. If you want to take multiple readings, remove the tube from the instrument, place it in a tube rack, and allow it to equilibrate to room temperature for at least 30 seconds before rereading the tube.
  • You may read the sample up to 3 hours after mixing if it is protected from light. After this time, the reading will not be accurate.
  • Keep standards and sample tubes in the dark and protected from light in between readings.

    Find additional tips, troubleshooting help, and resources within ourNucleic Acid Quantification Support Center.

  • What are the excitation/emission wavelengths for dyes in the Qubit Assays?

    The exact excitation/emission wavelength information is proprietary. Here are the approximate excitation/emission wavelengths:

    - Qubit dsDNA HS Assay: ~500 nm/ ~530 nm
    - Qubit dsDNA BR Assay: ~510 nm/ ~530 nm
    - Qubit ssDNA Assay: ~490 nm/ ~520 nm
    - Qubit RNA HS Assay: ~640 nm/ ~670 nm
    - Qubit RNA BR Assay: ~640 nm/ ~670 nm
    - Qubit microRNA Assay: ~500 nm/ ~520 nm
    - Qubit Protein Assay: ~470 nm/ ~570 nm

    Find additional tips, troubleshooting help, and resources within our Nucleic Acid Quantification Support Center.

    Can I make my own assay for the Qubit Fluorometer?

    Yes, you can, for Qubit instruments developed after the original Qubit (1.0) Fluorometer. See MyQubit assay instructions here (http://www.thermofisher.com/us/en/home/life-science/laboratory-instruments/fluorometers/qubit/qubit-assays/myqubit.html.html).

    I have a crude lysate. Will the Quant-iT and Qubit assays work?

    Generally, the cleaner the sample the better. Some salts, proteins, and detergents are tolerated in the assays; see the specific assay protocol for which ones and at what concentrations.

    Citations & References (15)

    Citations & References
    Abstract
    Systems-Level Analysis of Nitrogen Starvation-Induced Modifications of Carbon Metabolism in a Chlamydomonas reinhardtii Starchless Mutant.
    Authors:Blaby IK, Glaesener AG, Mettler T, Fitz-Gibbon ST, Gallaher SD, Liu B, Boyle NR, Kropat J, Stitt M, Johnson S, Benning C, Pellegrini M, Casero D, Merchant SS,
    Journal:
    PubMed ID:24280389
    'To understand the molecular basis underlying increased triacylglycerol (TAG) accumulation in starchless (sta) Chlamydomonas reinhardtii mutants, we undertook comparative time-course transcriptomics of strains CC-4348 (sta6 mutant), CC-4349, a cell wall-deficient (cw) strain purported to represent the parental STA6 strain, and three independent STA6 strains generated by complementation of sta6 (CC-4565/STA6-C2, ... More
    Comprehensive genetic analysis of complement and coagulation genes in atypical hemolytic uremic syndrome.
    Authors:Bu F, Maga T, Meyer NC, Wang K, Thomas CP, Nester CM, Smith RJ,
    Journal:
    PubMed ID:24029428
    Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy caused by uncontrolled activation of the alternative pathway of complement at the cell surface level that leads to microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney failure. In approximately one half of affected patients, pathogenic loss-of-function variants in regulators of complement or ... More
    Comparative transcriptome analysis of field- and chamber-grown samples of Colobanthus quitensis (Kunth) Bartl, an Antarctic flowering plant.
    Authors:Cho SM, Lee H, Jo H, Lee H, Kang Y, Park H, Lee J
    Journal:Sci Rep
    PubMed ID:30038328
    'Colobanthus quitensis is one of the two vascular plants inhabiting the Antarctic. In natural habitats, it grows in the form of a cushion or mats, commonly observed in high latitudes or alpine vegetation. Although this species has been investigated over many years to study its geographical distribution and physiological adaptations ... More
    Enrichment post-library preparation enhances the sensitivity of high-throughput sequencing-based detection and characterization of viruses from complex samples.
    Authors:Paskey AC, Frey KG, Schroth G, Gross S, Hamilton T, Bishop-Lilly KA
    Journal:BMC Genomics
    PubMed ID:30808306
    'Sequencing-based detection and characterization of viruses in complex samples can suffer from lack of sensitivity due to a variety of factors including, but not limited to, low titer, small genome size, and contribution of host or environmental nucleic acids. Hybridization-based target enrichment is one potential method for increasing the sensitivity ... More
    Fibroblast activation protein is dispensable in the anti-influenza immune response in mice.
    Authors:Tan SY, Chowdhury S, Polak N, Gorrell MD, Weninger W
    Journal:PLoS One
    PubMed ID:28158223
    'Fibroblast activation protein alpha (FAP) is a unique dual peptidase of the S9B serine protease family, being capable of both dipeptidyl peptidase and endopeptidase activities. FAP is expressed at low level in healthy adult organs including the pancreas, cervix, uterus, submaxillary gland and the skin, and highly upregulated in embryogenesis, ... More