Ligasa de ADN T4 (1 U/μl)
Ligasa de ADN T4 (1 U/μl)
Invitrogen™

Ligasa de ADN T4 (1 U/μl)

La ligasa de ADN T4 cataliza la formación de enlaces fosfodiéster en presencia de ATP entre ADN bicatenario con extremosMás información
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoCantidad
15224017100 U
15224025500 U
152240904 × 500 U
Número de catálogo 15224017
Precio (USD)
154,00
Each
Añadir al carro de la compra
Cantidad:
100 U
Pedido a granel o personalizado
Precio (USD)
154,00
Each
Añadir al carro de la compra
La ligasa de ADN T4 cataliza la formación de enlaces fosfodiéster en presencia de ATP entre ADN bicatenario con extremos 3´-hidroxilo y 5´-fosfato. El exclusivo tampón de ligasa de ADN T4 optimiza la ligadura, que puede realizarse en 5 minutos. Los ácidos nucleicos de una sola cadena no son sustratos para esta enzima.

Aplicaciones
Clonación (ligadura con extremo romo o extremo cohesivo) y adición de enlaces o adaptadores a ADN de extremo romo


Purificada a partir del lisógeno lambda de E. coli NM989

Pruebas de rendimiento y calidad
Endodesoxirribonucleasa, ensayos de endodesoxirribonucleasa 3´y 5´; ligadura de eficacia probada

Definición de la unidad
Una unidad cataliza el intercambio de pirofosfato marcado como 1 nmol 32P en ATP en 20 min a 37 °C. Una unidad es igual a aproximadamente 300 unidades de ligadura de extremo cohesivo.

Condiciones de reacción unitarias
66 mM de Tris-HCl (pH 7,6), 6,6 mM de MgCl2, 10 mM de DTT, 66 µM de ATP, 3,3 µM de pirofosfato marcado como 32P y enzima en 0,1 ml durante 20 min a 37 °C.

Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.

Especificaciones
Tampón compatibleTampón de ADN ligasa, tampón de reacción 5X
Tipo de productoT4 DNA Ligase
Cantidad100 U
Condiciones de envíoHielo seco
Concentración1 U/μl
EnzimaLigasa
Unit SizeEach
Contenido y almacenamiento
ADN ligasa T4 se suministra con un vial de tampón de reacción 5X [250 mm de Tris-HCl (pH de 7,6), 50 mm de MgCl2, 5 mm de ATP, 5 mm de DTT, polietilenglicol-8000 al 25 % (p/v)]. Almacenar a -20 °C.

Preguntas frecuentes

What is the difference between T4 DNA Ligase and E.coli DNA Ligase?

The main difference between the 2 enzymes is that E. coli DNA Ligase cannot ligate blunt dsDNA fragments. Both ligases can be used to repair single stranded nicks in duplex DNA and to perform cohesive or sticky end ligations. E. coli DNA Ligase is generally used to seal nicks during second strand cDNA synthesis, since T4 DNA Ligase could result in formation of chimeric inserts.

How can I optimize my ligation reaction?

Please consider the following suggestions:
1– Try different molar ratios of insert to vector. Having an excess of insert is usually what will work, try 1:1 to 15:1 insert:vector.
2– Try increasing the time of the ligation at 37 degrees C.
3– Try performing the ligation at 16 degrees C overnight (you can set it up on your PCR machine).

I cannot transform my cells right away. Can I store my ligation reaction? If so, at what temperature should I store it?

Make sure you have inactivated the ligase and store the ligation reaction at 4 degrees C.

What kind of controls should I have for restriction cloning?

You can have all of the below controls or select the one you consider the most appropriate to the problem you are facing:
1– Transform the E. coli with circular plasmid to assess the competency of the cells (how well they are taking up DNA).
2– Transform and plate the dephosphorylated vector. It will help you assess how well the dephosphorylation worked and what proportion of colonies in your ligation transformation plate could be false positives (re-ligated vector or background).
3– Use T4 DNA igase to re-ligate your cut vector, or lambda DNA/Hind III marker. It will help you assess whether the ligase itself is working properly.

What are common inhibitors of the T4 DNA ligase?

dATP is a competitive inhibitor. Phosphate will reduce ligation efficiency. Detergents in your ligation buffer will likely not affect activity. High levels (0.2M) Na2+, K+, Cs+, Li+, and NH4+ inhibit the enzyme almost completely. Polyamines, spermine, and spermidine also serve as inhibitors.

Citations & References (13)

Citations & References
Abstract
DNA sequence variation in the promoter region of the VEGF gene impacts VEGF gene expression and maximal oxygen consumption.
Authors:Prior SJ, Hagberg JM, Paton CM, Douglass LW, Brown MD, McLenithan JC, Roth SM,
Journal:Am J Physiol Heart Circ Physiol
PubMed ID:16339827
'In its role as an endothelial cell proliferation and migration factor, vascular endothelial growth factor (VEGF) can affect peripheral circulation, and therefore impact maximal oxygen consumption (Vo2max). Because of the role of VEGF, and because variation in the VEGF gene has the ability to alter VEGF gene expression and VEGF ... More
Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes.
Authors: Graham David E; Xu Huimin; White Robert H;
Journal:J Biol Chem
PubMed ID:11830598
'The hyperthermophilic euryarchaeon Methanococcus jannaschii uses coenzyme M (2-mercaptoethanesulfonic acid) as the terminal methyl carrier in methanogenesis. We describe an enzyme from that organism, (2R)-phospho-3-sulfolactate synthase (ComA), that catalyzes the first step in coenzyme M biosynthesis. ComA catalyzed the stereospecific Michael addition of sulfite to phosphoenolpyruvate over a broad range ... More
Biosynthesis of riboflavin in archaea studies on the mechanism of 3,4-dihydroxy-2-butanone-4-phosphate synthase of Methanococcus jannaschii.
Authors:Fischer M, Romisch W, Schiffmann S, Kelly M, Oschkinat H, Steinbacher S, Huber R, Eisenreich W, Richter G, Bacher A,
Journal:J Biol Chem
PubMed ID:12200440
'The hypothetical protein predicted by the open reading frame MJ0055 of Methanococcus jannaschii was expressed in a recombinant Escherichia coli strain under the control of a synthetic gene optimized for translation in an eubacterial host. The recombinant protein catalyzes the formation of the riboflavin precursor 3,4-dihydroxy-2-butanone 4-phosphate from ribulose 5-phosphate ... More
Characterization of the SECIS binding protein 2 complex required for the co-translational insertion of selenocysteine in mammals.
Authors:Kinzy SA, Caban K, Copeland PR,
Journal:Nucleic Acids Res
PubMed ID:16155186
'Selenocysteine is incorporated into at least 25 human proteins by a complex mechanism that is a unique modification of canonical translation elongation. Selenocysteine incorporation requires the concerted action of a kink-turn structural RNA (SECIS) element in the 3'' untranslated region of each selenoprotein mRNA, a selenocysteine-specific translation elongation factor (eEFSec) ... More
Substantially enhanced cloning efficiency of SAGE (Serial Analysis of Gene Expression) byadding a heating step to the original protocol.
Authors:Kenzelmann M, Muhlemann K
Journal:Nucleic Acids Res
PubMed ID:9889294
'The efficiency of the original SAGE (Serial Analysis of Gene Expression) protocol was limited by a small average size of cloned concatemers. We describe a modification of the technique that overcomes this problem. Ligation of ditags yields concatemers of various sizes. Small concatemers may aggregate and migrate with large ones ... More