Células competentes MAX Efficiency™ DH5α
Células competentes MAX Efficiency™ DH5α
Invitrogen™

Células competentes MAX Efficiency™ DH5α

Las células competentes MAX Efficiency DH5α son una cepa conocida y versátil que puede utilizarse en muchas aplicaciones cotidianas deMás información
Have Questions?
Número de catálogoCantidad
182580125 x 200 μl
Número de catálogo 18258012
Precio (USD)
-
Cantidad:
5 x 200 μl
Las células competentes MAX Efficiency DH5α son una cepa conocida y versátil que puede utilizarse en muchas aplicaciones cotidianas de clonación. Además de permitir la detección azul/blanca, las mutaciones recA1 y endA1 de las células DH5α aumentan la estabilidad de los insertos y mejoran la calidad del ADN plasmídico preparado a partir de minipreparaciones.

Las características de las células competentes MAX Efficiency DH5α incluyen:

• Eficacia de transformación de hasta 1 × 109 transformantes/µg de ADN plasmídico
• Alta producción plasmídica de la cepa DH5α (endA1) E. coli
• Con capacidad para detección azul/blanca (lacZΔM15)
• Mayor estabilidad de los insertos (recA1)

Acerca de las células competentes MAX Efficiency DH5α
Las células competentes MAX Efficiency DH5α se han preparado mediante una modificación patentada del procedimiento de Hanahan (1983). Estas células son adecuadas para la construcción de bancos de genes y para la generación de bibliotecas de ADNc mediante vectores derivados de plásmidos. El marcador Φ80lacZΔM15 proporciona complementación α del gen de β-galactosidasa a partir de vectores pUC o similares. Por tanto, se puede utilizar para la detección azul/blanca de colonias en placas bacterianas con Bluo-gal o X-gal. Las células DH5α se pueden transformar con eficacia con plásmidos de gran tamaño. También pueden servir de huésped para los vectores de clonación M13mp si se suministra un lecho de DH5α-FT, DH5αF′, DH5αF′IQ, JM101 o JM107 para permitir la formación de placas.

Genotipo: F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rk-, mk+) phoA supE44 λ-thi-1 gyrA96 relA1

Encuentre la cepa y el formato que necesite
Las células DH5α están disponibles con distintas eficacias de transformación y en formatos electrocompetentes y químicamente competentes, así como en alícuotas de un solo uso.

Células competentes Subcloning Efficiency DH5α: nuestras células competentes más económicas para el uso diario
Células competentes Library Efficiency DH5α: económicas y para usar con ADN difícil de transformar
Células competentes MAX Efficiency DH5α-T1R: resistentes al fago T1, > 109 transformantes/µg de ADN plasmídico
Células competentes One Shot MAX Efficiency DH5α-T1R: formato de un solo uso, resistente al fago T1, > 109 transformantes/µg de ADN plasmídico
Células competentes ElectroMAX DH5α: electrocompetentes con > 1010 transformantes/µg de ADN plasmídico e ideal para bibliotecas de ADNc o insertos más grandes
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Resistencia bacteriana a los antibióticosNo
Tramado azul/blanco
Clonación de ADN metiladoNo
Clonación de ADN inestableNo es adecuado para clonar ADN inestable
Contiene el episoma F'Carece de episoma F'
Compatibilidad de alto rendimientoNo compatible con alto rendimiento (manual)
Mejora la calidad de los plásmidos
Preparación de ADN no metiladoNo es adecuado para preparar ADN no metilado
Línea de productosDH5a, MAX Efficiency
Tipo de productoCélula competente
Cantidad5 x 200 μl
Reduce la recombinación
Condiciones de envíoHielo seco
Resistente al fago T1 (tonA)No
Nivel de eficiencia de transformaciónAlta eficacia (> 10^9 ufg⁄µ g)
FormatoTubo
EspecieE. coli
Unit SizeEach
Contenido y almacenamiento
Contiene:
• Células competentes Max Efficiency DH5α: 5 viales, 200 µl cada uno (total de 1 ml)
• ADN pUC19 (0,01 µg/ml): 1 vial, 100 µl
• Medio S.O.C.: 2 frascos, 6 ml cada uno

Almacenar las células competentes a -80 °C. Almacene pUC19 DNA a -20 °C. Almacenar el medio S.O.C. a 4 °C o a temperatura ambiente.

Preguntas frecuentes

I am trying to clone an insert that is supposedly pretty toxic. I used DH5? and TOP10 cells for the transformation and got no colonies on the plate. Do you have any suggestions for me?

If the insert is potentially toxic to the host cells, here are some suggestions that you can try:

- After transforming TOP10 or DH5? cells, incubate at 25-30°C instead of 37°C. This will slow down the growth and will increase the chances of cloning a potentially toxic insert.
- Try using TOP10F' cells for the transformation, but do not add IPTG to the plates. These cells carry the lacIq repressor that represses expression from the lac promoter and so allows cloning of toxic genes. Keep in mind that in the absence of IPTG, blue-white screening cannot be performed.
- Try using Stbl2 cells for the transformation.

How do you recommend that I prepare my DNA for successful electroporation of E. coli?

For best results, DNA used in electroporation must have a very low ionic strength and a high resistance. A high-salt DNA sample may be purified by either ethanol precipitation or dialysis.

The following suggested protocols are for ligation reactions of 20ul. The volumes may be adjusted to suit the amount being prepared.

Purifying DNA by Precipitation: Add 5 to 10 ug of tRNA to a 20ul ligation reaction. Adjust the solution to 2.5 M in ammonium acetate using a 7.5 M ammonium acetate stock solution. Mix well. Add two volumes of 100 % ethanol. Centrifuge at 12,000 x g for 15 min at 4C. Remove the supernatant with a micropipet. Wash the pellet with 60ul of 70% ethanol. Centrifuge at 12,000 x g for 15 min at room temperature. Remove the supernatant with a micropipet. Air dry the pellet. Resuspend the DNA in 0.5X TE buffer [5 mM Tris-HCl, 0.5 mM EDTA (pH 7.5)] to a concentration of 10 ng/ul of DNA. Use 1 ul per transformation of 20 ul of cell suspension.

Purifying DNA by Microdialysis: Float a Millipore filter, type VS 0.025 um, on a pool of 0.5X TE buffer (or 10% glycerol) in a small plastic container. Place 20ul of the DNA solution as a drop on top of the filter. Incubate at room temperature for several hours. Withdraw the DNA drop from the filter and place it in a polypropylene microcentrifuge tube. Use 1ul of this DNA for each electrotransformation reaction.

You offer competent cells in Subcloning Efficiency, Library Efficiency and MAX Efficiency. How do these differ?

There are a few exceptions, but in general the difference is in guaranteed transformation efficiency as follows:

Subcloning Efficiency cells are guaranteed to produce at least 1.0 x 10E6 transformants per µg of transformed pUC19 or pUC18 supercoiled plasmid
Library Efficiency cells are guaranteed to produce at least 1.0 x 10E8 transformants per µg pUC19 or pUC18 DNA
MAX Efficiency cells are guaranteed to produce at least 1.0 x 10E9 transformants per µg pUC19 or pUC18 DNA

What are the advantages of using TOP10 over DH5alpha cells for cloning?

The main advantage is that TOP10 cells have mutations in the mcrA, mcrB and mrr genes which encode restriction systems for methylated DNA. This means that you can clone highly methylated DNA derived from such sources as mammalian and plant cells, and it will not be degraded after transformation.

Do any Invitrogen competent cells contain DMSO in the freezing medium?

Yes, several of our competent cells products are frozen with DMSO. The presence of DMSO (dimethylsulfoxide) will generally be indicated in the MSDS files if you have a question about a particular product, but here is a list of commonly used products that are known to have DMSO in the freezing buffer:

One Shot OmniMAX 2 T1 Phage Resistant Cells, Cat. No. C8540-03

One Shot INV?F' Chemically Competent Cells, Cat. No. C2020-03 and C2020-06

One Shot MAX Efficiency DH5?-T1 Chemically Competent Cells, Cat. No. 12297-016

MAX Efficiency DH5?-T1 Phage Resistant Cells, Cat. No. 12034-013

MAX Efficiency DH5? Chemically Competent Cells, Cat. No. 18258-012

Library Efficiency DH5? Chemically Competent Cells, Cat. No. 18263-012

MAX Efficiency DH5? F'IQ Cells, Cat. No. 18288-019

MAX Efficiency Stbl2Chemically Competent Cells, Cat. No. 10268-019

Citations & References (12)

Citations & References
Abstract
Studies on transformation of Escherichia coli with plasmids.
Authors:Hanahan D,
Journal:J Mol Biol
PubMed ID:6345791
Factors that affect the probability of genetic transformation of Escherichia coli by plasmids have been evaluated. A set of conditions is described under which about one in every 400 plasmid molecules produces a transformed cell. These conditions include cell growth in medium containing elevated levels of Mg2+, and incubation of ... More
DNA sequence variation in the promoter region of the VEGF gene impacts VEGF gene expression and maximal oxygen consumption.
Authors:Prior SJ, Hagberg JM, Paton CM, Douglass LW, Brown MD, McLenithan JC, Roth SM,
Journal:Am J Physiol Heart Circ Physiol
PubMed ID:16339827
'In its role as an endothelial cell proliferation and migration factor, vascular endothelial growth factor (VEGF) can affect peripheral circulation, and therefore impact maximal oxygen consumption (Vo2max). Because of the role of VEGF, and because variation in the VEGF gene has the ability to alter VEGF gene expression and VEGF ... More
A role for mitochondrial Bak in apoptotic response to anticancer drugs.
Authors: Wang G Q; Gastman B R; Wieckowski E; Goldstein L A; Gambotto A; Kim T H; Fang B; Rabinovitz A; Yin X M; Rabinowich H;
Journal:J Biol Chem
PubMed ID:11447222
'In the present study a clonal Jurkat cell line deficient in expression of Bak was used to analyze the role of Bak in cytochrome c release from mitochondria. The Bak-deficient T leukemic cells were resistant to apoptosis induced by UV, staurosporin, VP-16, bleomycin, or cisplatin. In contrast to wild type ... More
Comparison of kinetic properties between two mammalian ras p21 GDP/GTP exchange proteins, ras guanine nucleotide-releasing factor and smg GDP dissociation stimulation.
Authors:Orita S, Kaibuchi K, Kuroda S, Shimizu K, Nakanishi H, Takai Y
Journal:J Biol Chem
PubMed ID:8244990
'The mammalian counterpart of the yeast ras p21 GDP/GTP exchange protein CDC25, ras GRF, was expressed in Escherichia coli and purified, and its kinetic properties were compared with those of another mammalian ras p21 GDP/GTP exchange protein, smg GDS. ras GRF was active on Ki- and Ha- ras p21s but ... More
Residues in the first extracellular loop of a G protein-coupled receptor play a role in signal transduction.
Authors:Akal-Strader A, Khare S, Xu D, Naider F, Becker JM.
Journal:J Biol Chem
PubMed ID:12058045
'The Saccharomyces cerevisiae pheromone, alpha-factor (WHWLQLKPGQPMY), and Ste2p, its G protein-coupled receptor, were used as a model system to study ligand-receptor interaction. Cys-scanning mutagenesis on each residue of EL1, the first extracellular loop of Ste2p, was used to generate a library of 36 mutants with a single Cys residue substitution. ... More