Maleimida C2 Alexa Fluor™ 647
Maleimida C<sub>2</sub> Alexa Fluor&trade; 647
Maleimida C<sub>2</sub> Alexa Fluor&trade; 647
Maleimida C<sub>2</sub> Alexa Fluor&trade; 647
Maleimida C<sub>2</sub> Alexa Fluor&trade; 647
Invitrogen™

Maleimida C2 Alexa Fluor™ 647

Alexa Fluor™ 647 es un tinte de color rojo lejano brillante y fotoestable con una excitación adaptada idealmente para lasMás información
Have Questions?
Número de catálogoCantidad
A203471 mg
Número de catálogo A20347
Precio (USD)
664,20
Each
Añadir al carro de la compra
Cantidad:
1 mg
Precio (USD)
664,20
Each
Añadir al carro de la compra
Alexa Fluor™ 647 es un tinte de color rojo lejano brillante y fotoestable con una excitación adaptada idealmente para las líneas de láser de 594 nm o 633 nm. El tinte Alexa Fluor™ 647, empleado para la generación estable de señales para la obtención de imágenes en citometría de flujo, es soluble en agua e insensible al pH entre pH 4 y pH 10. Además de las formulaciones de colorante reactivo, ofrecemos el colorante Alexa Fluor™ 647 conjugado con una serie de anticuerpos, péptidos, proteínas, marcadores y sustratos de amplificación optimizados para el etiquetado y la detección celular (más información).

El derivado de la maleimida de Alexa Fluor™ 647 es la herramienta más popular para conjugar el colorante con un grupo tiol en una proteína, oligonucleótido tiofosfato o ligando de bajo peso molecular. Los conjugados Alexa Fluor™ 647 resultantes presentan una fluorescencia más brillante y una mayor fotoestabilidad que los conjugados de otros fluoróforos espectralmente similares.

Información detallada sobre esta maleimida AlexaFluor™

Etiqueta de fluoróforo: Colorante Alexa Fluor™ 647
Grupo reactivo: maleimida
Reactividad: grupos tiol en proteínas y ligandos, oligonucleótidos tiofosforados
Excitación/emisiones del conjugado: 651/671 nm
Coeficiente de extinción: 265.000 cm-1 m-1
Colorantes similares espectrales: Cy5
Peso molecular: ∼1250

Reacción de conjugación habitual
La proteína debe disolverse en una concentración de entre 50 y 100 µM en un tampón adecuado (de 10 a 100 mM de fosfato, Tris o HEPES) con un pH de 7,0 a 7,5. En este intervalo de pH, los grupos tiol de la proteína son lo suficientemente nucleófilos para reaccionar casi exclusivamente con el reactivo en presencia de los más numerosos grupos amino de la proteína, que están protonados y son relativamente no reactivos. Se recomienda reducir los enlaces de disulfuro en este punto mediante un agente de reductor 10 veces en exceso molar, como DTT o TCEP. El exceso de DTT debe eliminarse por diálisis y la posterior modificación de tiol debe efectuarse sin presencia de oxígeno para evitar que los enlaces de disulfuro se vuelvan a formar; estas precauciones no son necesarias si se utiliza TCEP antes de la conjugación de maleimida.

La maleimida Alexa Fluor™ suele disolverse en dimetilsulfóxido (DMSO) anhidro en una concentración de 1 a 10 mm inmediatamente antes de su uso. Las soluciones madre deben protegerse de la luz en la medida de lo posible. Generalmente, esta solución madre se agrega a la solución de proteína gota a gota mientras se agita para producir aproximadamente de 10 a 20 moles de reactivo por mol de proteína, y la reacción puede proseguir a temperatura ambiente durante 2 horas o a 4 °C durante la noche, protegida de la luz. Cualquier reactivo al tiol que no haya reaccionado puede consumirse si se añade un exceso de glutatión, mercaptoetanol tiol de peso molecular bajo soluble.

Purificación del conjugado
Los anticuerpos etiquetados se separan normalmente del colorante Alexa Fluor™ mediante una columna de filtración en gel, como Sephadex™ G-25, BioGel™ P-30 o equivalentes. Para cantidades mucho mayores o menores de proteínas, seleccione un medio de filtración en gel con un corte de peso molecular adecuado o purifique por diálisis. Ofrecemos varios kits de purificación optimizados para diferentes cantidades de conjugado de anticuerpos:
Kit de purificación de conjugado de anticuerpos para 0,5-1 mg (A33086)
Kit de purificación de conjugado de anticuerpos para 20-50 µg (A33087)
Kit de purificación de conjugado de anticuerpos para 50-100 µg (A33088)

Más información sobre el etiquetado de proteínas y anticuerpos
Ofrecemos una amplia selección de kits de etiquetado de anticuerpos y proteínas Molecular Probes™ que se ajustan a su material de partida y a su configuración experimental. Consulte nuestros kits de etiquetado de anticuerpos o utilice nuestra herramienta de selección química de etiquetado para otras opciones. Para obtener más información acerca de nuestros kits de marcado, lea la sección 1.2 sobrekits para marcado de proteínas y ácidos nucleicos del manual de Molecular Probes™.

Creamos conjugados personalizados
Si no encuentra lo que busca en nuestro catálogo en línea, le prepararemos el conjugado de anticuerpos o proteínas que desee. Nuestro servicio de conjugación personalizada es eficiente y confidencial, y garantizamos la calidad de nuestro trabajo. Contamos con la certificación ISO 9001:2000.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Reactividad químicaTiol
Emisión671 nm
Excitación651 nm
Etiqueta o tinteAlexa Fluor™ 647
Tipo de productoTinte
Cantidad1 mg
Fracción reactivaMaleimida
Condiciones de envíoTemperatura ambiente
Tipo de etiquetaColorantes Alexa Fluor
Línea de productosAlexa Fluor
Unit SizeEach
Contenido y almacenamiento
Almacenar en el congelador (de – 5 a – 30 °C) y proteger de la luz.

Citations & References (39)

Citations & References
Abstract
Membrane protein stoichiometry determined from the step-wise photobleaching of dye-labelled subunits.
Authors:Das SK, Darshi M, Cheley S, Wallace MI, Bayley H
Journal:Chembiochem
PubMed ID:17503420
Reversible transition between the surface trimer and membrane-inserted monomer of annexin 12.
Authors:Ladokhin AS, Haigler HT
Journal:Biochemistry
PubMed ID:15736950
'Under mildly acidic conditions, annexin 12 (ANX) inserts into lipid membranes to form a transbilayer pore [Langen, R., et al. (1998) Proc. Natl. Acad. Sci. U.S.A. 95, 14060]. In this study, we have addressed the question of the oligomeric state of ANX in this transbilayer conformation by means of Forster-type ... More
Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex.
Authors:Bowen ME, Weninger K, Ernst J, Chu S, Brunger AT
Journal:Biophys J
PubMed ID:15821166
'The assembly of multiprotein complexes at the membrane interface governs many signaling processes in cells. However, very few methods exist for obtaining biophysical information about protein complex formation at the membrane. We used single molecule fluorescence resonance energy transfer to study complexin and synaptotagmin interactions with the SNARE complex in ... More
Chaperoning of insertion of membrane proteins into lipid bilayers by hemifluorinated surfactants: application to diphtheria toxin.
Authors:Palchevskyy SS, Posokhov YO, Olivier B, Popot JL, Pucci B, Ladokhin AS
Journal:Biochemistry
PubMed ID:16489756
'Hemifluorinated compounds, such as HF-TAC, make up a novel class of nondetergent surfactants designed to keep membrane proteins soluble under nondissociating conditions [Breyton, C., et al. (2004) FEBS Lett. 564, 312]. Because fluorinated and hydrogenated chains do not mix well, supramicellar concentrations of these surfactants can coexist with intact lipid ... More
Multicolor single-molecule FRET to explore protein folding and binding.
Authors:Gambin Y, Deniz AA,
Journal:Mol Biosyst
PubMed ID:20601974
'Proper protein function in cells, tissues and organisms depends critically on correct protein folding or interaction with partners. Over the last decade, single-molecule FRET (smFRET) has emerged as a powerful tool to probe complex distributions, dynamics, pathways and landscapes in protein folding and binding reactions, leveraging its ability to avoid ... More