Kit de detección de disociación genómica GeneArt™
Kit de detección de disociación genómica GeneArt™
Invitrogen™

Kit de detección de disociación genómica GeneArt™

El kit de detección de disociación genómica GeneArt es un método rápido, basado en la endonucleasa T7 I para cuantificarMás información
Have Questions?
Número de catálogoCantidad
A2437220 reactions
Número de catálogo A24372
Precio (USD)
372,96
Each
Añadir al carro de la compra
Cantidad:
20 reactions
Precio (USD)
372,96
Each
Añadir al carro de la compra
El kit de detección de disociación genómica GeneArt es un método rápido, basado en la endonucleasa T7 I para cuantificar la forma en que su protocolo de edición del genoma causa inserciones y eliminaciones (indels) en el genoma de su línea celular. Se trata de la manera más rápida de cuantificar y validar el mejor RNAg de CRISPR-Cas9, o la mejor nucleasa del efector TAL, para su experimento de ingeniería celular. El kit de detección de disociación genómica GeneArt proporciona una solución cómoda, rápida y completa.

Con este método basado en la endonucleasa T7 I (T7EI), puede medir de forma rápida y segura la eficiencia de edición del genoma en el objetivo generada por la actividad de unión final no homóloga (NHEJ). Las ventajas del kit de detección de disociación genómica GeneArt son:

Tiempo mínimo de manipulación manual — amplificación de PCR a partir de lisado celular, no se requiere purificación de ADN
Protocolo corto — cuatro horas desde la recolección celular hasta los resultados cuantificados
Solo hay que añadir cebadores de PCR — todo lo necesario en una caja. No se pueden comprar mezclas maestras de PCR ni kits de extracción de ADN.
Cuantifique la eficacia de edición directamente desde su gel — la densidad de la banda de gel se correlaciona directamente con la formación de indel en el objetivo

Obtenga resultados el mismo día sin esperar los resultados de la secuenciación ni realizar análisis de secuenciación complicados.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
FormatoKit
N.º de reacciones20 reacciones
PolimerasaPolimerasa Taq
Tipo de productoKit de detección de disociación genómica
Cantidad20 reactions
Lugar de reconocimientoINDEL
Suficiente para20 reacciones
TécnicaEfector de nucleasa TAL de CRISPR-Cas9
Método de detecciónSonda de cebado
FormularioLíquido
Velocidad de reacciónFast
Unit SizeEach
Contenido y almacenamiento
Contiene:

• 1 frasco de tampón de lisis celular
• 1 tubo de proteinasa K
• 1 tubo de supermezcla de PCR
• 1 tubo de agua
• 1 tubo de enzima de detección T7E1
• 1 tubo de tampón de reacción de detección T7E1
• 1 tubo de molde de control y cebadores

Almacenar todos los componentes a una temperatura entre -5° y -30 °C.

Preguntas frecuentes

What are TALs or TALENS?

TALs or TALENs are transcription activator-like effector nuclease proteins that are naturally occurring transcriptional activators secreted by Xanthomonas spp. into their plant hosts. GeneArt TALs are derived from Xathomonas TAL effectors, the DNA-binding domain of which consists of a variable number of amino acid repeats. Each repeat contains 33–35 amino acids and recognizes a single DNA base pair. The DNA recognition occurs via 2 hypervariable amino acid residues at positions 12 and 13 within each repeat, called repeat-variable di-residues (RVDs). TAL effector repeats can be assembled in modular fashion, varying the RVDs to create a TAL protein that recognizes a specific target DNA sequence.

What is CRISPR-STOP?

CRISPR-STOP is a method of inserting STOP codon sequences to generate knockouts.

Please refer to the following article: CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations.

Find additional tips, troubleshooting help, and resources within our Genome Editing Support Center.

I am working with TALs and want to incorporate an effector domain that you do not carry. What should I do?

We do offer a multiple cloning site sequence in the place of the effector domain sequence for our TAL MCS entry vector. This option allows you to insert any protein-coding sequence, and allows your resulting TAL protein to deliver the effector in a sequence-specific manner anywhere in the genome. We also provide gene synthesis services to generate any effector domain for which you don't have a template.

I am trying to design my TAL but do not have a T at the 5´ end of the TAL effector. What should I do?

While our Invitrogen GeneArt Precision TALs required a T at the 5´end and 13-18 bp spacing between the forward and reverse TAL effectors for proper pairing of Fok1 nucleases, the Invitrogen GeneArt PerfectMatch TALs allow for targeting of any sequence across the genome and eliminates the 5´ T constraints. Additionally, the spacing between the two effectors is optimal at 15-16 bp.

The binding domain for TALs can be either 19 or 25 bp in length. Does one work better than the other?

The 19 bp binding domains perform better for the nucleases. The binding sites do not need to be the same size; however, best performance for the nucleases is with the 19 bp binding domains.

Citations & References (7)

Citations & References
Abstract
CRISPR/Cas9-Mediated Genomic Deletion of the Beta-1, 4 N-acetylgalactosaminyltransferase 1 Gene in Murine P19 Embryonal Carcinoma Cells Results in Low Sensitivity to Botulinum Neurotoxin Type C.
Authors:Tsukamoto K, Ozeki C, Kohda T, Tsuji T,
Journal:
PubMed ID:26177297
'Botulinum neurotoxins produced by Clostridium botulinum cause flaccid paralysis by inhibiting neurotransmitter release at peripheral nerve terminals. Previously, we found that neurons derived from the murine P19 embryonal carcinoma cell line exhibited high sensitivity to botulinum neurotoxin type C. In order to prove the utility of P19 cells for the ... More
Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection.
Authors:Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, Ravinder N, Chesnut JD,
Journal:
PubMed ID:26003884
'CRISPR-Cas9 systems provide a platform for high efficiency genome editing that are enabling innovative applications of mammalian cell engineering. However, the delivery of Cas9 and synthesis of guide RNA (gRNA) remain as steps that can limit overall efficiency and ease of use. Here we describe methods for rapid synthesis of ... More
Multiplex genome engineering in human cells using all-in-one CRISPR/Cas9 vector system.
Authors:Sakuma T, Nishikawa A, Kume S, Chayama K, Yamamoto T,
Journal:
PubMed ID:24954249
CRISPR/Cas9-mediated genome editing is a next-generation strategy for genetic modifications, not only for single gene targeting, but also for multiple targeted mutagenesis. To make the most of the multiplexity of CRISPR/Cas9, we established a system for constructing all-in-one expression vectors containing multiple guide RNA expression cassettes and a Cas9 nuclease/nickase ... More
Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA.
Authors:Liang X, Potter J, Kumar S, Ravinder N, Chesnut JD
Journal:J Biotechnol
PubMed ID:27845164
'While CRISPR-based gene knock out in mammalian cells has proven to be very efficient, precise insertion of genetic elements via the cellular homology directed repair (HDR) pathway remains a rate-limiting step to seamless genome editing. Under the conditions described here, we achieved up to 56% targeted integration efficiency with up ... More
Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX.
Authors:Yu X, Liang X, Xie H, Kumar S, Ravinder N, Potter J, de Mollerat du Jeu X, Chesnut JD,
Journal:Biotechnol Lett
PubMed ID:26892225
'To identify the best lipid nanoparticles for delivery of purified Cas9 protein and gRNA complexes (Cas9 RNPs) into mammalian cells and to establish the optimal conditions for transfection. Using a systematic approach, we screened 60 transfection reagents using six commonly-used mammalian cell lines and identified a novel transfection reagent (named ... More