Dextran, SNARF™-1, 70,000 MW, Anionic
Dextran, SNARF™-1, 70,000 MW, Anionic
Invitrogen™

Dextran, SNARF™-1, 70,000 MW, Anionic

Los dextranos marcados son polisacáridos hidrófilos que se usan más comúnmente en estudios de microscopía para supervisar la división deMás información
Have Questions?
Número de catálogoCantidad
D33045 mg
Número de catálogo D3304
Precio (USD)
-
Cantidad:
5 mg
Los dextranos marcados son polisacáridos hidrófilos que se usan más comúnmente en estudios de microscopía para supervisar la división de células, registrar el movimiento de las células vivas e informar de las propiedades hidrodinámicas de la matriz citoplásmica. El dextrano etiquetado se suele introducir en las células mediante microinyección.

Obtenga más información sobre los indicadores de iones, incluidos los indicadores de calcio, potasio, pH y de potencial de la membrana ›

Especificaciones del dextrano:

Etiqueta (Ex/Em): SNARF™-1 (563/639)
Tamaño: 70 000 PM
Carga: aniónica
Fijable: No fijable

Altos estándares de fabricación de dextranos de Molecular Probes™
Ofrecemos más de 50 conjugados de dextranos fluorescentes y biotinilados en diversos rangos de peso molecular. Los dextranos son polisacáridos hidrofílicos que se caracterizan por su peso molecular de alto a moderado, su buena solubilidad en agua y su baja toxicidad. También suelen tener baja inmunogenicidad. Los dextranos son biológicamente inertes debido a sus vínculos poli-(α-D-1,6-glucosa) poco comunes, que los hacen resistentes a la incisión por la mayoría de las glucosidasas celulares endógenas.

En la mayoría de los casos, los dextranos fluorescentes Molecular Probes™ son mucho más brillantes y tienen una mayor carga negativa que los dextranos disponible de otras fuentes. Además, utilizamos métodos rigurosos para eliminar todo el colorante no conjugado posible y, a continuación, probar nuestros conjugados de dextranos por cromatografía de capa fina para ayudar a garantizar la ausencia de contaminantes de bajo peso molecular.

Una amplia selección de sustituyentes y pesos moleculares
Los dextranos Molecular Probes™ se conjugan con biotina o una amplia variedad de fluoróforos, incluidos siete de nuestros colorantes Alexa Fluor™ (Molecular Probes dextran conjugates–Table 14.4 [Conjugados de dextranos Molecular Probes, tabla 14.4]) y están disponibles en estos pesos moleculares nominales (PM): 3000; 10.000; 40.000; 70.000; 500.000 y 2.000.000 daltons.

Carga neta y capacidad de fijación del dextrano
Empleamos acoplamiento con succinimidilo de nuestros colorantes a la molécula de dextrano, que, en la mayoría de los casos, da lugar a un dextrano neutro o aniónico. La reacción usada para producir los dextranos Rhodamine Green™ y Alexa Fluor 488 hacen que el producto final sea neutro, aniónico o catiónico. Los dextranos Alexa Fluor, Cascade Blue, Lucifer Yellow, fluoresceína y Oregon Green son intrínsecamente aniónicos, mientras que la mayoría de los dextranos etiquetados con los tintes rodamina de zwiterión B, tetrametilrodamina y Texas Red™ son esencialmente neutros. Para producir más dextranos altamente aniónicos, hemos desarrollado un procedimiento exclusivo para agregar grupos con carga negativa a los portadores de dextranos; estos productos se denominan dextranos “polianiónicos”.

Algunas aplicaciones requieren que el trazador de dextranos se trate con formaldehído o glutaraldehído para su posterior análisis. Para estas aplicaciones, ofrecemos versiones que se pueden “fijar con lisina” de la mayoría de nuestros conjugados de dextranos de fluoróforos o biotina. Estos dextranos se han unido covalentemente residuos de lisina que permiten a conjugar los trazadores de dextranos con las biomoléculas circundantes mediante la fijación con aldehído para la detección posterior mediante técnicas imunohistoquímias y ultraestructurales. También hemos demostrado que 10.000 PM de conjugados de dextranos Alexa Fluor se pueden fijar con fijadores basados en aldehído.

Aplicaciones clave con dextranos etiquetados
Hay numerosas citas que describen el uso de dextranos etiquetados. Estos son algunos de los usos más comunes:

Rastreo neuronal (anterógrado y retrógrado) en células vivas
Rastreo de linaje celular en células vivas
Rastreo neuroanatómico
Investigación de las comunicaciones intercelulares (p. ej., en uniones de comunicación, durante la cicatrización de heridas y durante el desarrollo embrionario)
Investigación de la permeabilidad vascular y la integridad de la barrera hematoencefálica
Seguimiento de la endocitosis
Supervisión de la acidificación (algunos conjugados de dextranos son sensibles al pH)
Estudio de las propiedades hidrodinámicas de la matriz citoplasmática

Solo para uso en investigación. No diseñado para uso terapéutico o de diagnóstico en animales o humanos.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Método de detecciónFluorescente
Tipo de coloranteIndicador de pH
Cantidad5 mg
Condiciones de envíoTemperatura ambiente
Para utilizar con (equipo)Microscopio confocal, Lector de microplacas, Citómetro de flujo
Línea de productosSNARF
Tipo de productoDextrano
Unit SizeEach
Contenido y almacenamiento
Almacenar en el congelador de -5 °C a -30 °C y proteger de la luz.

Citations & References (15)

Citations & References
Abstract
Activity of the multidrug transporter results in alkalinization of the cytosol: measurement of cytosolic pH by microinjection of a pH-sensitive dye.
Authors:Thiebaut F, Currier SJ, Whitaker J, Haugland RP, Gottesman MM, Pastan I, Willingham MC
Journal:J Histochem Cytochem
PubMed ID:1692055
'Multidrug-resistant cells contain a plasma membrane efflux pump, the multidrug transporter, which actively expels certain hydrophobic drugs from the cytosol to the cell exterior. These drugs are usually positively charged at physiological pH. Because one might predict that this efflux of positively charged molecules might deplete the cytosol of protons, ... More
A novel role for carbonic anhydrase: cytoplasmic pH gradient dissipation in mouse small intestinal enterocytes.
Authors:Stewart AK, Boyd CA, Vaughan-Jones RD
Journal:J Physiol
PubMed ID:10066935
'1. The spatial and temporal distribution of intracellular H+ ions in response to activation of a proton-coupled dipeptide transporter localized at the apical pole of mouse small intestinal isolated enterocytes was investigated using intracellular carboxy-SNARF-1 fluorescence in combination with whole-cell microspectrofluorimetry or confocal microscopy. 2. In Hepes-buffered Tyrode solution, application ... More
Nuclear pH gradient in mammalian cells revealed by laser microspectrofluorimetry.
Authors:Seksek O, Bolard J
Journal:J Cell Sci
PubMed ID:8834810
Intracellular pH has been measured by laser microspectrofluorimetry, using the pH-sensitive dyes SNARF-1, SNARF-calcein and SNARF-1-dextran. By this technique it was possible to accurately determine pH in volumes as small as 0.5 x 0.5 x 1 microns 3. The probes were loaded into the cells either by diffusion of their ... More
Local extracellular acidification caused by Ca(2+)-dependent exocytosis in PC12 cells.
Authors:Shuba YM, Dietrich CJ, Oermann E, Cleemann L, Morad M,
Journal:Cell Calcium
PubMed ID:18346783
Exocytosis of acidic synaptic vesicles may produce local extracellular acidification, but this effect has not been measured directly and its magnitude may depend on the geometry and pH-buffering capacity of both the vesicles and the extracellular space. Here we have used SNARF dye immobilized by conjugation to dextran to measure ... More
Regional electroporation of single cardiac myocytes in a focused electric field.
Authors:Klauke N, Smith G, Cooper JM,
Journal:Anal Chem
PubMed ID:20020746
There is now a significant interest in being able to locate single cells within geometrically defined regions of a microfluidic chip and to gain intracellular access through the local electroporation of the cell membrane. This paper describes the microfabrication of electroporation devices which can enable the regional electroporation of adult ... More