Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm
Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm
Invitrogen™

Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm

Los geles de tricina Invitrogen Novex proporcionan separación de proteínas y péptidos de bajo peso molecular. En este sistema, la tricina reemplaza a la glicina en el tampón de desplazamiento, lo que resulta en una concentración y separación más eficientes para proteínas de bajo peso molecular y una mayor resolución de péptidos más pequeños.
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoPocillos
EC66752BOX12 pocillo
EC6675BOX10 pocillo
Número de catálogo EC66752BOX
Precio (USD)
-
Pocillos:
12 pocillo

Los geles de tricina Invitrogen Novex proporcionan separación de proteínas y péptidos de bajo peso molecular. El sistema de tricina es una modificación del sistema de tampón discontinuo de tris-glicina desarrollado por Schaegger y von Jagow (Schaegger y von Jagow, 1987) específicamente para la resolución de péptidos y proteínas de bajo peso molecular. En este sistema, la tricina reemplaza a la glicina en el tampón de desplazamiento, lo que resulta en una concentración y separación más eficientes para proteínas de bajo peso molecular y una mayor resolución de péptidos más pequeños.

Características de los geles de proteínas de tricina Novex:
• Aumento de la resolución de proteínas con pesos moleculares tan bajos como 2 kDa
• Mejora de la compatibilidad con la secuenciación directa de proteínas después de la transferencia a PVDF
• Reducción de la modificación de proteínas debido al menor pH del sistema de tampón de tricina

Formulación
Los geles de tricina Invitrogen se fabrican con reactivos de alta pureza, los cuales se someten a estrictos controles de calidad: base de Tris, HCI, acrilamida, bisacrilamida, TEMED, SAF y agua altamente purificada. Nuestros geles de tricina tienen un gel concentrador al 4 % y no contienen SDS. El sistema Tricine requiere SDS en tampones de muestra y desplazamiento para obtener los mejores resultados.

Elija el gel de tricina adecuado para su separación de proteínas
Los geles de tricina Invitrogen están disponibles en tres concentraciones de poliacrilamida del 10 %, 16 %, y un gradiente del 10–20 %. Seleccione entre nuestros muchos formatos de pocillo, incluyendo los de 10, 12 y 15 pocillos. Los geles de tricina están formulados para aplicaciones de electroforesis en geles de desnaturalización. Para una preparación óptima de las muestras, recomendamos el tampón de muestra de tricina SDS (LC1676), y para la separación óptima utilice el tampón de desplazamiento de tricina SDS (LC1675).

Para la transferencia de proteínas a una membrana, recomendamos utilizar el tampón de transferencia de Tris-glicina Novex (LC3675) si se realiza una transferencia húmeda tradicional mediante el módulo Blot XCell II (EI9051) o el módulo Mini Blot (B1000). La transferencia semiseca rápida se puede realizar con Invitrogen Power Blotter o la transferencia rápida en seco con el dispositivo de transferencia de gel iBlot 2 (IB21001).

For Research Use Only. Not for use in diagnostic procedures.
Especificaciones
Gel Thickness1,0 mm
Longitud (métrico)8 cm
Modo de separaciónPeso molecular
Línea de productosNovex
Cantidad10 geles/caja
Aplicaciones recomendadasDesnaturalización
Volumen de carga de muestrasHasta 20 µl
Duración de almacenamiento16 semanas
Condiciones de envíoHielo húmedo
Requisitos de almacenamientoAlmacenar entre 2 °C y 8 °C. No la congele.
Anchura (métrico)8 cm
Para utilizar con (equipo)Depósito de minigel, Minicelda XCell SureLock
Porcentaje del gel10 %
Tamaño de gelMini
Tipo de gelTricina
Intervalo de separaciónDe 10 a 30 kDa
Tipo de separaciónDesnaturalización
Pocillos12 pocillo
Unit SizeEach
Contenido y almacenamiento
Una caja contiene 10 geles. Almacenar en el refrigerador (2–8° C). No la congele. La vida útil es de 4–8 semanas dependiendo del tipo de gel.

Preguntas frecuentes

What does it mean when bands appear to be getting narrower (or "funneling") as they progress down a protein gel?

There may be too much beta-mercaptoethanol (BME), sample buffer salts, or dithiothreitol (DTT) in your samples. If the proteins are over-reduced, they can be negatively charged and actually repel each other across the lanes causing the bands to get narrower as they progress down the gel.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

If a Tricine gel heats up to around 37°C during a run, should any precautions be taken?

A temperature increase to 35°C to 40°C during electrophoresis is not uncommon for Tricine gels. If you want to run the gels at a cooler temperature, the lower (outer) buffer chamber can be filled higher or they can be run at a lower voltage, for example 100 V.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What type of transfer buffer should be used with Invitrogen Tricine gels?

For non-sequencing applications, any transfer buffer used with Tris-Glycine gels can be used with Tricine gels including Tris-Glycine transfer buffer. For sequencing applications, the buffer should be chemically compatible with sequencing protocols. Non-glycine based transfer buffers such as the NuPAGE Transfer buffer, 1/2X TBE Transfer buffer, or CAPS Buffer can be used for N-terminal sequencing . Generally, a pH which is close to neutral is desirable to maintain gel and protein stability. High current should be avoided because it can lead to heat generation and instability.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

If a Tricine gel is accidentally run with buffers used in the Tris-Glycine system, what will happen and why?

If the Tricine gel is run with Tris-Glycine sample buffer, the bands will behave abnormally and resolve poorly. If the Tricine gel is accidentally run with Tris-Glycine running buffer, the gel will take longer to run and the resolution, especially for smaller proteins, will be worse than when the proteins are run on a Tris-Glycine gel with Tris-Glycine buffers. This is due to a combination of increase in stack area size (glycine is a slower ion than Tricine) and the higher ionic strength of the Tricine gel.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What is the cause of smeary artifacts down the lanes of a Tricine gel and how can this be prevented?

Protein samples are possibly reoxidizing before the run is complete in the Tricine gel system. Since Tricine is a glycine derivative, the running pH ranges of the two systems are different. As a consequence, reduced samples tend to oxidize more in the Tricine system. Adding more reducing agent will not solve the problem.

One option is to alkylate the sample by reducing with 20 mM DTT at 70°C for 30 min, followed by 50 mM iodoacetic acid to alkylate.

Another method which inhibits oxidation is the addition of thioglycolic acid (TGA) to the running buffer. The reference to this is described by Hunkapiller et al, Methods of Enzymology, (91), 399, 1983.

Caution should be taken when using this method since this compound is both toxic and expensive. In addition, the TGA must be fresh as it tends to become oxidized itself over time. Oxidized TGA will actually promote sample re-oxidation.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

Citations & References (4)

Citations & References
Abstract
Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice.
Authors:Benner GE, Andrews GP, Byrne WR, Strachan SD, Sample AK, Heath DG, Friedlander AM,
Journal:Infect Immun
PubMed ID:10085037
'There is limited information concerning the nature and extent of the immune response to the virulence determinants of Yersinia pestis during the course of plague infection. In this study, we evaluated the humoral immune response of mice that survived lethal Y. pestis aerosol challenge after antibiotic treatment. Such a model ... More
Aggregation of the Fc epsilon RI in mast cells induces the synthesis of Fos-interacting protein and increases its DNA binding-activity: the dependence on protein kinase C-beta.
Authors:Lewin I, Jacob-Hirsch J, Zang ZC, Kupershtein V, Szallasi Z, Rivera J, Razin E,
Journal:J Biol Chem
PubMed ID:8576146
The ability of c-Fos to dimerize with various proteins creates transcription complexes which can exert their regulatory function on a variety of genes. One of the transcription factors that binds to c-Fos is the newly discovered Fos-interacting protein (FIP). In this report we present evidence for the regulation of the ... More
Enzyme-substrate intermediate at a specific lysine residue is required for deoxyhypusine synthesis. The role of Lys329 in human deoxyhypusine synthase.
Authors:Joe YA, Wolff EC, Lee YB, Park MH,
Journal:J Biol Chem
PubMed ID:9405486
Deoxyhypusine synthase catalyzes the first step in the post-translational synthesis of hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine] in eukaryotic translation initiation factor 5A. We recently reported biochemical evidence for a covalent enzyme-substrate intermediate involving a specific lysine residue (Lys329) in human deoxyhypusine synthase (Wolff, E. C., Folk, J. E., and Park, M. H. (1997) ... More
Anti-tumor antibody BR96 blocks cell migration and binds to a lysosomal membrane glycoprotein on cell surface microspikes and ruffled membranes.
Authors:Garrigues J, Anderson J, Hellström KE, Hellström I,
Journal:J Cell Biol
PubMed ID:7511141
BR 96 is an internalizing antibody that binds to Lewis Y (Le(y)), a carbohydrate determinant expressed at high levels on many human carcinomas (Hellström, I., H. J. Garrigues, U. Garrigues, and K. E. Hellström. 1990. Cancer Res. 50:2183-2190). Breast carcinoma cell lines grown to confluence bind less BR96 than subconfluent ... More