FluoSpheres™ Carboxylate-Modified Microspheres
FluoSpheres™ Carboxylate-Modified Microspheres
Invitrogen™

FluoSpheres™ Carboxylate-Modified Microspheres

Achieve the brightest fluorescence with Carboxylate-Modified FluoSphere Microspheres, available in different colors and particle sizes.
Have Questions?
Alterar visualizaçãobuttonViewtableView
Número do catálogoDiameter (Metric)ColorExcitation/EmissionQuantity
F88231.0 μmYellow-Green505/515 nm10 mL
F88030.1 μmYellow-Green505/515 nm10 mL
F88161.0 μmCrimson625/645 nm2 mL
F88010.1 μmRed580/605 nm10 mL
F88110.2 μmYellow-Green505/515 nm10 mL
F88070.2 μmDark Red660/680 nm2 mL
F107200.04 μmYellow-Green, Orange, Red, Dark Red505/515, 540/560, 580/605, 660/680 nm1 mL/each
F208810.2 μmOrange365/610 nm2 mL
F8783
conhecido também como F-8783
0.02 μmDark Red660/680 nm2 mL
F87860.02 μmRed580/605 nm10 mL
F8795
conhecido também como F-8795
0.04 μmYellow-Green505/515 nm1 mL
F88130.5 μmYellow-Green505/515 nm10 mL
F88201.0 μmOrange540/560 nm10 mL
F88252.0 μmNile Red535/575 nm2 mL
F88272.0 μmYellow-Green505/515 nm2 mL
F8781
conhecido também como F-8781
0.02 μmBlue365/415 nm10 mL
F8782
conhecido também como F-8782
0.02 μmCrimson625/645 nm2 mL
F87840.02 μmNile Red535/575 nm10 mL
F87870.02 μmYellow-Green505/515 nm10 mL
F8789
conhecido também como F-8789
0.04 μmDark Red660/680 nm1 mL
F8792
conhecido também como F-8792
0.04 μmOrange540/560 nm1 mL
F87930.04 μmRed580/605 nm1 mL
F87940.04 μmRed-Orange565/580 nm1 mL
F87970.1 μmBlue350/440 nm10 mL
F87990.1 μmInfrared715/755 nm1 mL
F8800
conhecido também como F-8800
0.1 μmOrange540/560 nm10 mL
F88050.2 μmBlue365/415 nm10 mL
F88060.2 μmCrimson625/645 nm2 mL
F88090.2 μmOrange540/560 nm10 mL
F88100.2 μmRed580/605 nm10 mL
F88120.5 μmRed580/605 nm10 mL
F88141.0 μmBlue365/415 nm10 mL
F88151.0 μmBlue350/440 nm10 mL
F88191.0 μmNile Red535/575 nm10 mL
F88211.0 μmRed580/605 nm10 mL
F8824
conhecido também como F-8824
2.0 μmBlue365/415 nm2 mL
F88262.0 μmRed580/605 nm2 mL
Número do catálogo F8823
Preço (BRL)
3.258,25
Each
Adicionar ao carrinho
Diameter (Metric):
1.0 μm
Color:
Yellow-Green
Excitation/Emission:
505/515 nm
Quantity:
10 mL
Preço (BRL)
3.258,25
Each
Adicionar ao carrinho

Easily perform flow cytometry, microscopy, HTS, HCS, immunoassay, and other laboratory applications using our extensive selection of FluoSpheres Carboxylate-Modified Microspheres. FluoSphere beads can be used in passive adsorption or active, covalent coupling of proteins, nucleic acids, and biomolecules for particle capture applications. FluoSphere microspheres are loaded with proprietary fluorescent dyes, making them the brightest microspheres available.

Visualize the brightest fluorescence for laboratoy applications including fluorescence microscopy, flow cytometry, HTS, HCS, and cell tracing with our Carboxylate-Modified FluoSphere Microspheres, which are manufactured from polystyrene microspheres and loaded with different proprietary dyes. Using specialized staining methods enables all of the fluorescent dye molecules to be contained inside each polystyrene microsphere instead of on the bead's surface. This protective environment within the bead shields the dye from detrimental environmental effects, such as photobleaching. Our carboxylate-modified microspheres are coated with a hydrophilic polymer containing multiple carboxylic acids for covalent attachment of ligands. A range of particle sizes is available for different research uses and experiments.
For Research Use Only. Not for use in diagnostic procedures.
Especificações
Excitation/Emission505/515 nm
Product LineFLUOSPHERES
Quantity10 mL
Surface ModificationCarboxylate
ColorYellow-Green
Diameter (Metric)1.0 μm
For Use With (Application)Fluorescence Microscopy
MaterialPolystyrene
Product TypeCarboxylate-Modified Microsphere
Unit SizeEach
Conteúdo e armazenamento
Store in refrigerator (2–8°C) and protect from light.

Frequently asked questions (FAQs)

I read that carboxylate-modified latex (CML) beads have a "fluffy coat" of carboxyl groups on their surface. What is meant by this?

The CML beads have a high density of carboxyl groups at the surface. The surface layer is quite hydrophilic and at the appropriate pH (pH>5), are charged; due to electrostatic repulsion, this type of surface is 3-dimensional and may be considered analogous to the fuzz on a tennis ball.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I have some FluoSpheres polystyrene microspheres, with 20 nm diameter. They are aggregating a lot. What can I do about it?

The smaller the microspheres, the greater the propensity to aggregate. But the aggregation is not irreversible. Sonicate in a bath sonicator or vortex to disperse, just prior to use. You can also add a small concentration of Tween-20 or Triton X-100 (unless you are using them in a live-cell system).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I sonicated my 2.0 µm carboxylate-modified microspheres, as recommended, but saw foaming (bubbles) on top of the solution. Should I be concerned?

Use of a bath sonicator is recommended to help break up any aggregated microspheres. The foaming is from Tween-20, which is in the stock solution to help prevent aggregation. It is normal and expected to see bubbles from this. Do not use a probe sonicator, which would cause damage to the microspheres (as well as much more bubbling).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

When does the warranty guarantee expire for FluoSpheres Carboxylated-Modified Microspheres?

FluoSpheres Carboxylate-Modified Microspheres (Cat. Nos. F8783, F8786, F8801, F8807, F8811, F8803, F8816, F8823, F20881, F10720) have a 1-year warranty guarantee, unless otherwise indicated on the Certificate of Analysis (COA).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What is the warranty for FluoSpheres microspheres?

The warranty period for FluoSpheres microspheres is 1-year from the date of shipment.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citações e referências (18)

Citações e referências
Abstract
Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence photobleaching.
Authors:Berk DA, Swartz MA, Leu AJ, Jain RK
Journal:Am J Physiol
PubMed ID:8769769
'Despite its relevance to the physiology of lymph formation and propulsion, the instantaneous flow velocity in single lymphatic capillaries has not been measured to date. The method of fluorescence recovery after photobleaching (FRAP) was adapted for this purpose and used to characterize flow in the lymphatic capillaries in tail skin ... More
Quantitating intracellular transport of polyplexes by spatio-temporal image correlation spectroscopy.
Authors:Kulkarni RP, Wu DD, Davis ME, Fraser SE
Journal:Proc Natl Acad Sci U S A
PubMed ID:15897455
'Quantitatively understanding how nonviral gene delivery vectors (polyplexes) are transported inside cells is essential before they can be optimized for gene therapy and medical applications. In this study, we used spatio-temporal image correlation spectroscopy (ICS) to follow polymer-nucleic acid particles (polyplexes) of various sizes and analyze their diffusive-like and flow ... More
Fractal nature of regional ventilation distribution.
Authors:Altemeier WA, McKinney S, Glenny RW
Journal:J Appl Physiol
PubMed ID:10797111
'High-resolution measurements of pulmonary perfusion reveal substantial spatial heterogeneity that is fractally distributed. This observation led to the hypothesis that the vascular tree is the principal determinant of regional blood flow. Recent studies using aerosol deposition show similar ventilation heterogeneity that is closely correlated with perfusion. We hypothesize that ventilation ... More
Why molecules move along a temperature gradient.
Authors:Duhr S, Braun D
Journal:Proc Natl Acad Sci U S A
PubMed ID:17164337
'Molecules drift along temperature gradients, an effect called thermophoresis, the Soret effect, or thermodiffusion. In liquids, its theoretical foundation is the subject of a long-standing debate. By using an all-optical microfluidic fluorescence method, we present experimental results for DNA and polystyrene beads over a large range of particle sizes, salt ... More
Central nervous system microglial cell activation and proliferation follows direct interaction with tissue-infiltrating T cell blasts.
Authors:Sedgwick JD, Ford AL, Foulcher E, Airriess R
Journal:J Immunol
PubMed ID:9605131
'Central nervous system (CNS)-resident macrophages (microglia) normally express negligible or low level MHC class II, but this is up-regulated in graft-vs-host disease (GvHD), in which a sparse CNS T cell infiltrate is observed. Relative to microglia from the normal CNS, those from the GvHD-affected CNS exhibited a 5-fold up-regulation of ... More