Penicilina-estreptomicina (10.000 U/ml)
Penicilina-estreptomicina (10.000 U/ml)
Penicilina-estreptomicina (10.000 U/ml)
Penicilina-estreptomicina (10.000 U/ml)
Gibco™

Penicilina-estreptomicina (10.000 U/ml)

Esta solución contiene 10.000 unidades/ml de penicilina y 10.000 µg/ml de estreptomicina. Los antibióticos penicilina y estreptomicina se usan paraMás información
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoCantidad
15140148
también denominado 15140-148
20 mL
15140122
también denominado 15140-122
100 mL
15140163
también denominado 15140-163
20 x 100 mL
Número de catálogo 15140148
también denominado 15140-148
Precio (CLP)
15.945
Each
Añadir al carro de la compra
Cantidad:
20 mL
Precio (CLP)
15.945
Each
Añadir al carro de la compra
Esta solución contiene 10.000 unidades/ml de penicilina y 10.000 µg/ml de estreptomicina. Los antibióticos penicilina y estreptomicina se usan para impedir la contaminación bacteriana de los cultivos celulares debido a su eficaz acción combinada contra bacterias grampositivas y gramnegativas. La penicilina se purificó en un principio a partir de los hongos Penicillium y actúa mediante una interferencia directa con el volumen de la pared celular bacteriana, e indirecta mediante la activación de la liberación de enzimas que alteran aún más la pared celular. La estreptomicina fue originalmente purificada a partir de Streptomyces griseus. Actúa mediante la creación de una unión a la subunidad 30S del ribosoma bacteriano, lo que inhibe la síntesis de proteínas y la muerte de las bacterias susceptibles.

Ofrecemos una amplia gama de antibióticos y antimicóticos tanto en formato líquido como en polvo. Obtenga más información sobre los siguientes tipos de productos:

Antibióticos de cultivo celular
Antibióticos de selección (incluidas las concentraciones de trabajo recomendadas)

Obtenga más información sobre el uso de antibióticos y antimicóticos en cultivo celular y revise las directrices para la descontaminación de cultivos.

Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.

Especificaciones
Concentración100X
Para utilizar con (aplicación)Prevención de la contaminación del cultivo celular
Cantidad20 mL
Duración de almacenamiento12 meses
Condiciones de envíoHielo seco
FormularioLíquido
Tipo de productoPenicilina-estreptomicina
EsterilidadEstéril con filtro
Sterilization MethodSterile-filtered
Unit SizeEach
Contenido y almacenamiento
Condiciones de almacenamiento: De – 5 a – 20 °C
Condiciones de envío: Congelado
Vida útil: 12 meses a partir de la fecha de fabricación

Preguntas frecuentes

My Penicillin-Streptomycin solution is not colorless. Is this normal?

Yes, this is normal and will not affect the potency or application of the product. This solution is typically colorless. However, it can have a pink to yellow color tint. The coloring is a carry-over from the manufacturing process of Streptomycin - the genus that Steptomycin is isolated from (Actinomycetes Streptomyces griseus) is responsible for a wide variety of pigments.

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

How can I decontaminate my cultures?

When an irreplaceable culture becomes contaminated, researchers may attempt to eliminate or control the contamination.

1. Determine if the contamination is bacteria, fungus, mycoplasma, or yeast. Read more here to view characteristics of each contaminant.
2. Isolate the contaminated culture from other cell lines.
3. Clean incubators and laminar flow hoods with a laboratory disinfectant, and check HEPA filters.
4. Antibiotics and antimycotics at high concentrations can be toxic to some cell lines. Therefore, perform a dose-response test to determine the level at which an antibiotic or antimycotic becomes toxic. This is particularly important when using an antimycotic such as Gibco Fungizone reagent or an antibiotic such as tylosin.

The following is a suggested procedure for determining toxicity levels and decontaminating cultures:

1. Dissociate, count, and dilute the cells in antibiotic-free media. Dilute the cells to the concentration used for regular cell passage.
2. Dispense the cell suspension into a multiwell culture plate or several small flasks. Add the antibiotic of choice to each well in a range of concentrations. For example, we suggest the following concentrations for Gibco Fungizone reagent: 0.25, 0.50, 1.0, 2.0, 4.0, and 8.0 µg/mL.
3. Observe the cells daily for signs of toxicity such as sloughing, appearance of vacuoles, decrease in confluency, and rounding.
4. When the toxic antibiotic level has been determined, culture the cells for two to three passages using the antibiotic at a concentration one- to two-fold lower than the toxic concentration.
5. Culture the cells for one passage in antibiotic-free media.
6. Repeat step 4.
7. Culture the cells in antibiotic-free medium for four to six passages to determine if the contamination has been eliminated.

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

What antibiotics do you offer to help control or eliminate cell culture contamination?

Please view the following page to browse the cell culture antibiotics we offer (https://www.thermofisher.com/us/en/home/life-science/cell-culture/mammalian-cell-culture/antibiotics.html).

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

Citations & References (43)

Citations & References
Abstract
Identification of a novel redox-sensitive gene, Id3, which mediates angiotensin II-induced cell growth.
Authors:Mueller Cornelius; Baudler Stephanie; Welzel Hilke; Böhm Michael; Nickenig Georg;
Journal:Circulation
PubMed ID:12021231
BACKGROUND: Reactive oxygen species, such as superoxide (O(2)(-)), are involved in the abnormal growth of various cell types. Angiotensin II (Ang II) is one of the most potent inducers of oxidative stress in the vasculature. The molecular events involved in Ang II-induced proliferation of vascular smooth muscle cells (VSMCs) are ... More
Functional interaction of caveolin-1 with Bruton's tyrosine kinase and Bmx.
Authors: Vargas Leonardo; Nore Beston F; Berglof Anna; Heinonen Juhana E; Mattsson Pekka T; Smith C I Edvard; Mohamed Abdalla J;
Journal:J Biol Chem
PubMed ID:11751885
'Bruton''s tyrosine kinase (Btk), a member of the Tec family of protein-tyrosine kinases, has been shown to be crucial for B cell development, differentiation, and signaling. Mutations in the Btk gene lead to X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice. Using a co-transfection approach, we present evidence here ... More
Repression of activator protein-1-mediated transcriptional activation by the Notch-1 intracellular domain.
Authors: Chu Jianlin; Jeffries Shawn; Norton Jason E; Capobianco Anthony J; Bresnick Emery H;
Journal:J Biol Chem
PubMed ID:11739397
'Developmental decisions that control cell fate are commonly regulated by the Notch signaling pathway. Activation of transmembrane Notch receptors results in proteolytic liberation of the intracellular domain of Notch, which translocates into the nucleus, binds a repressor (C promoter binding factor 1/RBP-Jkappa, Su(H), and Lag-1 (CSL)), and induces target genes. ... More
A differential role for the mitogen-activated protein kinases in lipopolysaccharide signaling: the MEK/ERK pathway is not essential for nitric oxide and interleukin 1beta production.
Authors: Watters Jyoti J; Sommer Julie A; Pfeiffer Zachary A; Prabhu Usha; Guerra Alma N; Bertics Paul J;
Journal:J Biol Chem
PubMed ID:11786532
'Endotoxin (lipopolysaccharide, LPS) is a component of the outer membrane of Gram-negative bacteria and promotes the activation of macrophages and microglia. Although these cells are highly LPS-responsive, they serve unique tissue-specific functions and exhibit different LPS sensitivities. Accordingly, it was of interest to evaluate whether these biological differences reside in ... More
Cholesteryl ester is transported from caveolae to internal membranes as part of a caveolin-annexin II lipid-protein complex.
Authors: Uittenbogaard Annette; Everson William V; Matveev Sergey V; Smart Eric J;
Journal:J Biol Chem
PubMed ID:11733519
'We previously demonstrated that in Chinese hamster ovary cells scavenger receptor, class B, type I-dependent selective cholesteryl ester uptake occurs in caveolae. In the present study we hypothesized that cholesteryl ester is transported from caveolae through the cytosol to an internal membrane by a caveolin chaperone complex similar to the ... More