Células competentes Subcloning Efficiency™ DH5α
Células competentes Subcloning Efficiency™ DH5α
Invitrogen™

Células competentes Subcloning Efficiency™ DH5α

Las células competentes Subcloning Efficiency DH5α constituyen una cepa versátil de células competentes químicamente que proporcionan una eficacia de transformaciónMás información
Have Questions?
Número de catálogoCantidad
182650174 x 500 μl
Número de catálogo 18265017
Precio (CLP)
115.842
Each
Añadir al carro de la compra
Cantidad:
4 x 500 μl
Precio (CLP)
115.842
Each
Añadir al carro de la compra
Las células competentes Subcloning Efficiency DH5α constituyen una cepa versátil de células competentes químicamente que proporcionan una eficacia de transformación > 1 x 106 cfu/µg de ADN plasmídico. Las células competentes Subcloning Efficiency DH5α son una solución económica para los procedimientos de subclonación rutinarios o para cualquier aplicación en la que el ADN inicial está limitado.

Características de las células competentes Subcloning Efficiency DH5 son una solución económica para los procedimientosα:

• Diseñadas para uso general diario
• Contienen marcadores genéticos útiles para aplicaciones generales

Ideales para los procedimientos rutinarios de subclonación
Las células competentes Subcloning Efficiency DH5α se recomiendan para la subclonación rutinaria de genes en vectores plasmídicos, pero no son adecuadas para la generación de bibliotecas de ADNc. Estas células económicas producen > 1 x 106 transformantes/µg de ADN de control por 50 µl de reacción

Capacidades de clonación flexibles
Las células competentes Subcloning Efficiency DH5α contienen los siguientes marcadores genéticos que proporcionan estas ventajas:

lacZΔM15 para la detección azul/blanca de colonias en placas que contienen X-gal o Bluo-gal
recA1 asegura una mayor estabilidad de los insertos y evita una recombinación no deseada
endA1 mejora la producción y la calidad del ADN plasmídico preparado a partir de minipreparaciones
•Las células competentes DH5α admiten la replicación de vectores M13mp, pero no admiten formación de placas

Genotipo: F- Φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17(rk-, mk+) phoA supE44 thi-1 gyrA96 relA1 λ-
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Resistencia bacteriana a los antibióticosNo
Tramado azul/blanco
Clonación de ADN metiladoNo
Clonación de ADN inestableNo es adecuado para clonar ADN inestable
Contiene el episoma F'Carece de episoma F'
Compatibilidad de alto rendimientoNo compatible con alto rendimiento (manual)
Mejora la calidad de los plásmidos
Preparación de ADN no metiladoNo es adecuado para preparar ADN no metilado
Línea de productosDH5a, Subcloning Efficiency
Tipo de productoCélula competente
Cantidad4 x 500 μl
Reduce la recombinación
Condiciones de envíoHielo seco
Resistente al fago T1 (tonA)No
Nivel de eficiencia de transformaciónEficacia de subclonación (10^6-10^7 ufc⁄µ g)
FormatoTubo
EspecieE. coli
Unit SizeEach
Contenido y almacenamiento
Contiene:
• Células competentes Subcloning Efficiency DH5α: 4 viales, 500 µl cada uno (total de 2 ml)
• ADN pUC19 (100 pg/ul): 1 vial, 20 µl

Almacene las células competentes a - 80 °C. Almacene pUC19 DNA a -20 °C.

Preguntas frecuentes

I am trying to clone an insert that is supposedly pretty toxic. I used DH5? and TOP10 cells for the transformation and got no colonies on the plate. Do you have any suggestions for me?

If the insert is potentially toxic to the host cells, here are some suggestions that you can try:

- After transforming TOP10 or DH5? cells, incubate at 25-30°C instead of 37°C. This will slow down the growth and will increase the chances of cloning a potentially toxic insert.
- Try using TOP10F' cells for the transformation, but do not add IPTG to the plates. These cells carry the lacIq repressor that represses expression from the lac promoter and so allows cloning of toxic genes. Keep in mind that in the absence of IPTG, blue-white screening cannot be performed.
- Try using Stbl2 cells for the transformation.

How do you recommend that I prepare my DNA for successful electroporation of E. coli?

For best results, DNA used in electroporation must have a very low ionic strength and a high resistance. A high-salt DNA sample may be purified by either ethanol precipitation or dialysis.

The following suggested protocols are for ligation reactions of 20ul. The volumes may be adjusted to suit the amount being prepared.

Purifying DNA by Precipitation: Add 5 to 10 ug of tRNA to a 20ul ligation reaction. Adjust the solution to 2.5 M in ammonium acetate using a 7.5 M ammonium acetate stock solution. Mix well. Add two volumes of 100 % ethanol. Centrifuge at 12,000 x g for 15 min at 4C. Remove the supernatant with a micropipet. Wash the pellet with 60ul of 70% ethanol. Centrifuge at 12,000 x g for 15 min at room temperature. Remove the supernatant with a micropipet. Air dry the pellet. Resuspend the DNA in 0.5X TE buffer [5 mM Tris-HCl, 0.5 mM EDTA (pH 7.5)] to a concentration of 10 ng/ul of DNA. Use 1 ul per transformation of 20 ul of cell suspension.

Purifying DNA by Microdialysis: Float a Millipore filter, type VS 0.025 um, on a pool of 0.5X TE buffer (or 10% glycerol) in a small plastic container. Place 20ul of the DNA solution as a drop on top of the filter. Incubate at room temperature for several hours. Withdraw the DNA drop from the filter and place it in a polypropylene microcentrifuge tube. Use 1ul of this DNA for each electrotransformation reaction.

You offer competent cells in Subcloning Efficiency, Library Efficiency and MAX Efficiency. How do these differ?

There are a few exceptions, but in general the difference is in guaranteed transformation efficiency as follows:

Subcloning Efficiency cells are guaranteed to produce at least 1.0 x 10E6 transformants per µg of transformed pUC19 or pUC18 supercoiled plasmid
Library Efficiency cells are guaranteed to produce at least 1.0 x 10E8 transformants per µg pUC19 or pUC18 DNA
MAX Efficiency cells are guaranteed to produce at least 1.0 x 10E9 transformants per µg pUC19 or pUC18 DNA

When should DMSO, formamide, glycerol and other cosolvents be used in PCR?

Cosolvents may be used when there is a failure of amplification, either because the template contains stable hairpin-loops or the region of amplification is GC-rich. Keep in mind that all of these cosolvents have the effect of lowering enzyme activity, which will decrease amplification yield. For more information see P Landre et al (1995). The use of co-solvents to enhance amplification by the polymerase chain reaction. In: PCR Strategies, edited by MA Innis, DH Gelfand, JJ Sninsky. Academic Press, San Diego, CA, pp. 3-16.

Additionally, when amplifying very long PCR fragments (greater than 5 kb) the use of cosolvents is often recommended to help compensate for the increased melting temperature of these fragments.

Find additional tips, troubleshooting help, and resources within our PCR and cDNA Synthesis Support Center.

Citations & References (7)

Citations & References
Abstract
Modified gateway system for double shRNA expression and Cre/lox based gene expression.
Authors:Radulovich N, Leung L, Tsao MS,
Journal:BMC Biotechnol
PubMed ID:21418658
'The growing need for functional studies of genes has set the stage for the development of versatile tools for genetic manipulations. Aiming to provide tools for high throughput analysis of gene functions, we have developed a modified short hairpin RNA (shRNA) and gene expression system based on Gateway Technology. The ... More
Multicolor and electron microscopic imaging of connexin trafficking.
Authors: Gaietta Guido; Deerinck Thomas J; Adams Stephen R; Bouwer James; Tour Oded; Laird Dale W; Sosinsky Gina E; Tsien Roger Y; Ellisman Mark H;
Journal:Science
PubMed ID:11964472
'Recombinant proteins containing tetracysteine tags can be successively labeled in living cells with different colors of biarsenical fluorophores so that older and younger protein molecules can be sharply distinguished by both fluorescence and electron microscopy. Here we used this approach to show that newly synthesized connexin43 was transported predominantly in ... More
Studies of the properties of human origin recognition complex and its Walker A motif mutants.
Authors:Giordano-Coltart J, Ying CY, Gautier J, Hurwitz J,
Journal:Proc Natl Acad Sci U S A
PubMed ID:15618391
The eukaryotic six-subunit origin recognition complex (ORC) governs the initiation site of DNA replication and formation of the prereplication complex. In this report we describe the isolation of the wild-type Homo sapiens (Hs)ORC and variants containing a Walker A motif mutation in the Orc1, Orc4, or Orc5 subunit using the ... More
Requirement for either a host- or pectin-induced pectate lyase for infection of pisum sativum by nectriahematococca.
Authors:Rogers LM, Kim YK, Guo W, Gonzalez-Candelas L, Li D, Kolattukudy PE
Journal:Proc Natl Acad Sci U S A
PubMed ID:10931947
Fungal pathogens usually have multiple genes that encode extracellular hydrolytic enzymes that may degrade the physical barriers in their hosts during the invasion process. Nectria hematococca, a plant pathogen, has two inducible pectate lyase (PL) genes (pel) encoding PL that can help degrade the carbohydrate barrier in the host. pelA ... More
UDP-glucuronate Decarboxylase, a Key Enzyme in Proteoglycan Synthesis. CLONING, CHARACTERIZATION, AND LOCALIZATION.
Authors: Moriarity John L; Hurt K Joseph; Resnick Adam C; Storm Phillip B; Laroy Wouter; Schnaar Ronald L; Snyder Solomon H;
Journal:J Biol Chem
PubMed ID:11877387
UDP-glucuronate decarboxylase (UGD) catalyzes the formation of UDP-xylose from UDP-glucuronate. UDP-xylose is then used to initiate glycosaminoglycan biosynthesis on the core protein of proteoglycans. In a yeast two-hybrid screen with the protein kinase Akt (protein kinase B), we detected interactions with a novel sequence, which we cloned and expressed. The ... More