ADN polimerasa EquiPhi29™
ADN polimerasa EquiPhi29™
Thermo Scientific™

ADN polimerasa EquiPhi29™

Thermo Scientific EquiPhi29 DNA Polymerase es un mutante patentado de la ADN polimerasa phi29 DNA Polymerase desarrollado con la evoluciónMás información
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoCantidadProductName
A393925000 U, 10 U/μl
A39390250 U, 10 U/μl
A393911000 U, 10 U/μl
Número de catálogo A39392
Precio (CLP)
1.656.326
Each
Añadir al carro de la compra
Cantidad:
5000 U, 10 U/μl
Pedido a granel o personalizado
Precio (CLP)
1.656.326
Each
Añadir al carro de la compra
Thermo Scientific EquiPhi29 DNA Polymerase es un mutante patentado de la ADN polimerasa phi29 DNA Polymerase desarrollado con la evolución de proteínas in vitro. Esta enzima se mejora significativamente respecto a la ADN polimerasa phi29 a efectos de termoestabilidad de las proteínas, velocidad de reacción, rendimiento del producto y sesgo de amplificación, a la vez que conserva todas las ventajas de la enzima de tipo natural, como la alta capacidad de procesos (más de 70 kb), fuerte actividad de desplazamiento de la cadena y actividad exonucleasa 3'→5' (corrección), que actúa preferentemente en ADN o ARN monocatenarios. Por esta razón se recomiendan los random primers (hexanucleótidos con secuencias al azar) resistentes a la exonucleosa.

Características destacadas:
• El sesgo de amplificación más bajo del mercado
• Rendimientos extremadamente altos de ADN amplificado, incluso a partir de cantidades diminutas de plantilla
• Síntesis de ADN de alta precisión en menos tiempo

Aplicaciones:
• Amplificación de genoma completo sin sesgo (WGA) con diversos tipos de muestras:
   –ADN de células únicas
   –Células microbianas no cultivadas y partículas víricas
   –Organismos patógenos o metagenomas
   –ADN para detección SNP y STR
• Amplificación de círculo móvil (RCA)
• Amplificación de ADN cebado por proteínas
• Clonación sin células de ADN letal
• Genotipado in situ con sondas candado
• Amplificación de ADN cebado por ARN

Nota: La adición de pirofosfato a la mezcla de reacción con ADN polimerasa EquiPhi29 DNA Polymerase puede mejorar aún más la síntesis del ADN.

Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Concentración10 U/μL
Temperatura óptima de reacción42°C
Tiempo de reacción2 hours
Condiciones de envíoHielo seco
Para utilizar con (aplicación)MDA-WGA, RCA
PolimerasaEquiPhi29 DNA Polymerase
Tipo de productoStand-alone enzyme
Cantidad5000 U, 10 U/μl
Unit SizeEach
Contenido y almacenamiento
• 5 × 100 μl de ADN polimerasa EquiPhi29 (10 U/μl)
• 3 × 1 ml de tampón de reacción de ADN polimerasa EquiPhi29 (10X)
• 0,25 ml de DTT (100 mM)

Almacenar entre - 5 y - 30 °C.

Preguntas frecuentes

What is the error rate of EquiPhi29 DNA Polymerase?

The error rate of EquiPhi29 DNA Polymerase is 6 x 10-6.
The error rate of EquiPhi29 DNA Polymerase was measured according to the method described in literature:
Mielinis, P., Sukackaitė, R., Serapinaitė, A., Samoilovas, F., Alzbutas, G., Matjošaitis, K., & Lubys, A. (2021). MUA-based molecular indexing for rare mutation detection by Next-Generation sequencing. Journal of Molecular Biology, 433(19), 167209. https://doi.org/10.1016/j.jmb.2021.167209

Find additional tips, troubleshooting help, and resources within our PCR and cDNA Synthesis Support Center.

Can I use EquiPhi29 DNA Polymerase to incorporate 5-methyl-dCTP?

Thermo Scientific EquiPhi29 DNA Polymerase is a proprietary mutant phi29 DNA Polymerase developed through in vitro protein evolution. EquiPhi29 DNA Polymerase as well as phi29 DNA Polymerase should be able to incorporate 5-methyl-dCTP nucleotides and other modified nucleotides.

Find additional tips, troubleshooting help, and resources within our PCR and cDNA Synthesis Support Center.

When using EquiPhi29 DNA Polymerase, do I need to purify amplified DNA products before downstream applications?

Cleaning of the amplified product is not required prior to several downstream methods (e.g., debranching, digestion with restriction endonucleases, Sanger sequencing); the dilution of amplified product is sufficient. If the clean-up procedure is needed, we recommend using an affinity-based spin-column or magnetic bead-based purification method.

Find additional tips, troubleshooting help, and resources within our PCR and cDNA Synthesis Support Center.

What is the minimal recommended time for amplification with EquiPhi29 DNA Polymerase?

The optimal reaction time for DNA amplification with EquiPhi29 DNA Polymerase is 2 hours. For samples with ≥1 pg of DNA input, DNA amplification time can be shortened to 1 hour if maximizing product yield is not essential.

Find additional tips, troubleshooting help, and resources within our PCR and cDNA Synthesis Support Center.

Can liquid media culture or colonies be used as a starting material for amplification with EquiPhi29 DNA Polymerase?

Yes. EquiPhi29 DNA Polymerase can work with different types of sample input material such as purified DNA, liquid media culture, agar plate colonies, etc.

Find additional tips, troubleshooting help, and resources within our PCR and cDNA Synthesis Support Center.

Citations & References (18)

Citations & References
Abstract
Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization.
Authors:Esteban JA, Salas M, Blanco L
Journal:J Biol Chem
PubMed ID:8428945
'Phi 29 DNA polymerase is able to catalyze two different synthetic reactions: protein-primed initiation and DNA polymerization. We have studied the fidelity of phi 29 DNA polymerase when carrying out these two reactions. Global fidelity was dissected into three steps: insertion discrimination, mismatch elongation, and proofreading. The insertion discrimination of ... More
Whole-metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using phi29 polymerase.
Authors:Yokouchi H, Fukuoka Y, Mukoyama D, Calugay R, Takeyama H, Matsunaga T
Journal:Environ Microbiol
PubMed ID:16817924
'Limitations in obtaining sufficient specimens and difficulties in extracting high quality DNA from environmental samples have impeded understanding of the structure of microbial communities. In this study, multiple displacement amplification (MDA) using phi29 polymerase was applied to overcome these hindrances. Optimization of the reaction conditions for amplification of the bacterial ... More
Suitability of genomic DNA synthesized by strand displacement amplification (SDA) for AFLP analysis: genotyping single spores of arbuscular mycorrhizal (AM) fungi.
Authors:Gadkar V, Rillig MC
Journal:J Microbiol Methods
PubMed ID:15936100
'Limited biological samples of microbial origin often yield insufficient amounts of genomic DNA, making application of standard techniques of genetic analysis, like amplified fragment length polymorphism (AFLP), virtually impossible. The Phi29 DNA polymerase based whole genome amplification (WGA) method has the potential to alleviate this technical bottleneck. In the present ... More
Novel application of Phi29 DNA polymerase: RNA detection and analysis in vitro and in situ by target RNA-primed RCA.
Authors:Lagunavicius A, Merkiene E, Kiveryte Z, Savaneviciute A, Zimbaite-Ruskuliene V, Radzvilavicius T, Janulaitis A
Journal:RNA
PubMed ID:19244362
We present a novel Phi29 DNA polymerase application in RCA-based target RNA detection and analysis. The 3'-->5' RNase activity of Phi29 DNA polymerase converts target RNA into a primer and the polymerase uses this newly generated primer for RCA initiation. Therefore, using target RNA-primed RCA, padlock probes may be targeted ... More
Towards the analysis of the genomes of single cells: further characterisation of the multiple displacement amplification.
Authors:Panelli S, Damiani G, Espen L, Micheli G, Sgaramella V
Journal:Gene
PubMed ID:16564650
The development of methods for the analysis and comparison of the nucleic acids contained in single cells is an ambitious and challenging goal that may provide useful insights in many physiopathological processes. We review here some of the published protocols for the amplification of whole genomes (WGA). We focus on ... More