Click-IT™ Palmitic Acid, Azide (15-Azidopentadecanoic Acid)
Click-IT™ Palmitic Acid, Azide (15-Azidopentadecanoic Acid)
Invitrogen™

Click-IT™ Palmitic Acid, Azide (15-Azidopentadecanoic Acid)

Green features
Identifique y caracterice las proteínas palmitiladas con el ácido palmítico Click-iT®, azida, mediante el uso de la potente química clic,Más información
Have Questions?
Número de catálogoCantidad
C102651 mg
Número de catálogo C10265
Precio (CLP)
760.581
Each
Añadir al carro de la compra
Cantidad:
1 mg
Precio (CLP)
760.581
Each
Añadir al carro de la compra
Identifique y caracterice las proteínas palmitiladas con el ácido palmítico Click-iT®, azida, mediante el uso de la potente química clic, una técnica de detección y etiquetado de dos pasos simple y sólida. En el primer paso, la biomolécula que contiene azida se añade a las células o a los animales y se incorpora activamente a las proteínas. A diferencia de otras etiquetas como la biotina o un colorante fluorescente, la etiqueta de azida es lo suficientemente pequeña como para que la molécula marcada sea un sustrato aceptable para las enzimas que incorporan este compuesto básico a las proteínas. La detección utiliza la ligación quimioselectiva o reacción «clic» entre una azida y un alquino en la que la proteína modificada se detecta con el correspondiente colorante que contiene alquino o un hapteno con el kit de tampones de reacción celular Click-iT® o el kit de tampones de reacción de proteínas Click-iT®. Con el kit de tampones de reacción celular Click-iT®, las células se pueden analizar mediante microscopía de fluorescencia, citometría de flujo o adquisición de imágenes y análisis de alto contenido (HCS) junto con otros biomarcadores de interés para obtener resultados ricos en contenido y contexto. Con el kit de tampones de reacción de proteínas Click-iT®, consiga una sensibilidad de detección en geles 1-D y Western blots en el rango bajo de femtomoles o realice análisis de LC-MS⁄MS y MALDI MS.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
FormatoSólido
Características ecológicasMenos peligroso
Método de etiquetadoMarcaje metabólico
Línea de productosClick-iT, Sondas moleculares
Tipo de productoÁcido palmítico
Cantidad1 mg
Condiciones de envíoTemperatura ambiente
Labeling TargetProteínas, Proteínas, Proteínas
Etiqueta o tinteAzida
Unit SizeEach
Contenido y almacenamiento
Almacenar a - 20 °C, desecado y protegido de la luz.

Preguntas frecuentes

I am observing no signal or very low signal for my click-labeled samples. What can I do to improve the signal?

The click reaction is only effective when copper is in the appropriate valency. Except for the DIBO alkyne-azide reaction, azides and alkynes will not react with each other without copper. Make sure that the click reaction mixture is used immediately after preparation when the copper (II) concentration is at its highest.
Do not use additive buffer that has turned yellow; it must be colorless to be active.
Cells need to be adequately fixed and permeabilized for the click reagents to have access to intracellular components that have incorporated the click substrate(s).
Some reagents can bind copper and reduce its effective concentration available to catalyze the click reaction. Do not include any metal chelator (e.g., EDTA, EGTA, citrate, etc.) in any buffer or reagent prior to the click reaction. Avoid buffers or reagents that include other metal ions that may be oxidized or reduced. It may be help to include extra wash steps on the cell or tissue sample before performing the click reaction.
You can repeat the click reaction with fresh reagents to try to improve signal. Increasing the click reaction time longer than 30 minutes will not improve a low signal. Performing a second, 30 minute incubation with fresh click reaction reagents is more effective at improving labeling.
Low signal can also be due to low incorporation of EdU, EU, or other click substrates. Other click substrates (e.g., AHA, HPG, palmitic acid, azide, etc.) incorporated into cellular components may have been lost if not adequately cross-linked in place or if the wrong fixative was used. For click substrates that are incorporated into the membrane or lipids, you should avoid the use of alcohol or acetone fixatives and permeabilizing agents.
The incorporated click substrate must be accessible at the time of the click reaction; labeling of incorporated amino acid analogs may be lower in native proteins relative to denatured proteins.
You may need to optimize the metabolic labeling conditions including analog incubation time or concentration. Cells that are healthy, not too high of a passage number and not too crowded may incorporate the analog better. You may create a positive control by including extra doses of the click substrate during multiple time points during an incubation time that spans or closely spans the doubling time of the cell type of interest.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (3)

Citations & References
Abstract
Chemical probes for the rapid detection of Fatty-acylated proteins in Mammalian cells.
Authors:Hang HC, Geutjes EJ, Grotenbreg G, Pollington AM, Bijlmakers MJ, Ploegh HL,
Journal:J Am Chem Soc
PubMed ID:17305342
'New tools are needed to further our understanding of protein fatty acylation. Here we demonstrate that omega-azido fatty acids can be efficiently metabolized by mammalian cells and serve as selective probes to rapidly visualize N-myristoylation and S-acylation, respectively. In addition to the more sensitive detection of fatty-acylated proteins with these ... More
Lipid raft-dependent endocytosis of close homolog of adhesion molecule L1 (CHL1) promotes neuritogenesis.
Authors:Tian N, Leshchyns'ka I, Welch JH, Diakowski W, Yang H, Schachner M, Sytnyk V,
Journal:J Biol Chem
PubMed ID:23144456
CHL1 plays a dual role by either promoting or inhibiting neuritogenesis. We report here that neuritogenesis-promoting ligand-dependent cell surface clustering of CHL1 induces palmitoylation and lipid raft-dependent endocytosis of CHL1. We identify ßII spectrin as a binding partner of CHL1, and we show that partial disruption of the complex between ... More
Robust fluorescent detection of protein fatty-acylation with chemical reporters.
Authors:Charron G, Zhang MM, Yount JS, Wilson J, Raghavan AS, Shamir E, Hang HC,
Journal:J Am Chem Soc
PubMed ID:19281244
Fatty-acylation of proteins in eukaryotes is associated with many fundamental cellular processes but has been challenging to study due to limited tools for rapid and robust detection of protein fatty-acylation in cells. The development of azido-fatty acids enabled the nonradioactive detection of fatty-acylated proteins in mammalian cells using the Staudinger ... More