ChromaTide™ Alexa Fluor™ 568-5-dUTP
ChromaTide™ Alexa Fluor™ 568-5-dUTP
Invitrogen™

ChromaTide™ Alexa Fluor™ 568-5-dUTP

Pueden usarse nucleidos dUTP, OBEA-dCTP y UTP etiquetados con colorante Molecular Probes™ ChromaTide™ para sintetizar sondas de ADN etiquetadas sinMás información
Have Questions?
Número de catálogoCantidad
C1139925 μl
Número de catálogo C11399
Precio (CLP)
712.472
Each
Añadir al carro de la compra
Cantidad:
25 μl
Precio (CLP)
712.472
Each
Añadir al carro de la compra
Pueden usarse nucleidos dUTP, OBEA-dCTP y UTP etiquetados con colorante Molecular Probes™ ChromaTide™ para sintetizar sondas de ADN etiquetadas sin necesidad de nucleidos etiquetados con radioisótopos peligrosos y costosos. Estos nucleidos pueden incorporarse mediante técnicas estándar de biología molecular; a continuación, las sondas etiquetadas pueden utilizarse en protocolos de hibridación in situ, micromatrices o transferencia. Los nucleidos etiquetados con colorante ChromaTide™ están disponibles en diferentes colores fluorescentes para facilitar el análisis multicolor.

Especificaciones de los nucleidos etiquetados con ChromaTide™:
• Ex/Em del colorante: Alexa Fluor™ 568-5-dUTP (575/600 nm)
• Longitud del enlazador alquinilamino: 5 átomos


Métodos para incorporar nucleidos ChromaTide™ en sondas
• Translación de mellas (nick translation)
• Etiquetado de primers aleatorios
• Etiquetado final con desoxinucleotidil transferasa terminal
• Transcripción inversa
• Amplificación de PCR


Consulte Métodos para la incorporación enzimática de dUTP ChromaTide™ para obtener directrices específicas para cada uno de estos métodos.

Los colorantes fluorescentes Alexa Fluor™ y BODIPY™ generan excelentes sondas
Las sondas generadas con nucleidos etiquetados pueden usarse para técnicas multicolores como la hibridación in situ y la hibridación en matrices. Nuestros conjugados de colorantes patentados BODIPY™ y Alexa Fluor™ son excepcionalmente brillantes, fotoestables y esencialmente insensibles al pH. El estrecho perfil de emisión de los colorantes BODIPY™ ayuda a asegurar una superposición espectral mínima. Los colorantes Alexa Fluor™ son muy solubles en agua, al igual que las sondas de ADN fabricadas a partir de ellos, lo que los convierte en las etiquetas preferidas para la hibridación fluorescente in situ.

Los enlazadores largos mejoran el rendimiento
Los nucleidos dUTP y UTP ChromaTide™ se modifican en la posición C-5 de la uridina a través de un único enlazador alquinilamino, que proporciona un espaciador entre el nucleótido y el colorante para reducir las interacciones entre ellos. El número en el nombre del producto, por ejemplo, “12” en fluoresceína-12 dUTP, indica la longitud neta del separador, en átomos. Estos espaciadores dan como resultado conjugados más brillantes y una mayor accesibilidad a los reactivos de detección secundaria.

Para obtener una lista completa de nuestros reactivos ChromaTide™: Nucleidos etiquetados con aha y Molecular Probes ChromaTide™: Tabla 8.5.
Para obtener información adicional sobre estos reactivos de etiquetado, lea la Sección 8.2: Etiquetado de oligonucleótidos y ácidos nucleicos del Manual de Molecular Probes™.

Para uso exclusivo en investigación. No diseñado para uso diagnóstico o terapéutico en humanos ni en animales.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Método de etiquetadoEtiquetado directo
Etiqueta o tinteAlexa Fluor™ 568
Cantidad25 μl
Condiciones de envíoHielo seco
Concentración1 mM
Línea de productosAlexa Fluor, ChromaTide
Unit SizeEach
Contenido y almacenamiento
Almacenar en el congelador (de -5 a -30 °C) y proteger de la luz.

Preguntas frecuentes

I'm getting high background after labeling with ChromaTide nucleotides. What do you recommend I do?

You can try to purify the ChromaTide labeled probe with an appropriate spin column-based method to remove unincorporated ChromaTide nucleotides. Ethanol precipitation may not efficiently remove the unincorporated ChromaTide nucleotides, so a spin column will need to be used.

The nucleic acid probe is not fluorescent after labeling with ChromaTide nucleotides. What do you recommend I try?

- Check the base-to-dye ratio to determine the level of incorporation of the ChromaTide nucleotides. Since fluorescent detection may be affected by underlabeling, overlabeling, instrument sensitivity, or other factors, the base-to-dye ratio is a better indicator of incorporation efficiency.
- ChromaTide nucleotides may not have been incorporated well in the enzymatic labeling reaction. Make sure that the enzymatic method used is compatible with the particular fluorescent ChromaTide nucleotide, since some methods may not be appropriate for all applications. You may also need to further optimize the enzymatic incorporation method, for example by optimizing enzyme concentration, incubation time, concentration, and ratio of labeled and unlabeled nucleotides. For PCR, a lower fidelity polymerase may give higher incorporation rates; however, incorporation rates will be generally low using PCR.
- Check the fluorescent filter used for detection to make sure it is compatible with the dye. You can also test a small drop of the undiluted fluorescent ChromaTide nucleotide in your filter to make sure you can image the dye alone before it is conjugated to the oligonucleotide. The fluorescence emission of Alexa Fluor 647 is not visible by eye and will require a far-red imaging system for detection.

Can ChromaTide nucleotides be used for labeling nucleic acids in live cells?

No, they are not cell permeant so they are only suitable for in vitro incorporation methods. The fluorescent dyes and phosphate groups are too highly charged to allow the nucleotides to penetrate the membrane of an intact cell. Nonfluorescent nucleosides without phosphates such as EdU, EU, or BrdU can be used for live cell nucleic acid incorporation studies.

How do I determine the incorporation efficiency of the ChromaTide Labeling Nucleotides after enzymatic incorporation?

The base-to-dye ratio is determined by measuring the absorbance of the nucleic acid at 260 nm and the absorbance of the dye at its absorbance maximum. Using the extinction coefficients for the appropriate dye and nucleic acid, you can then calculate the base-to-dye ratio for the labeled nucleic acid using the Beer-Lambert law. Detailed instructions can be found in these product manuals: (http://tools.thermofisher.com/content/sfs/manuals/td07604.pdf, http://tools.thermofisher.com/content/sfs/manuals/td07605.pdf).

What is the average dye to base incorporation rate when enzymatically incorporating ChromaTide nucleotides?

The average incorporation is one dye for every 100-150 bases, so the ChromaTide fluorescently labeled nucleotides typically produce the lowest labeling rates of the nucleic acid labeling methods we offer.

Citations & References (5)

Citations & References
Abstract
The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies.
Authors:Korbel JO, Tirosh-Wagner T, Urban AE, Chen XN, Kasowski M, Dai L, Grubert F, Erdman C, Gao MC, Lange K, Sobel EM, Barlow GM, Aylsworth AS, Carpenter NJ, Clark RD, Cohen MY, Doran E, Falik-Zaccai T, Lewin SO, Lott IT, McGillivray BC, Moeschler JB, Pettenati MJ, Pueschel SM, Rao KW, Shaffer LG, Shohat M, Van Riper AJ, Warburton D, Weissman S, Gerstein MB, Snyder M, Korenberg JR,
Journal:Proc Natl Acad Sci U S A
PubMed ID:19597142
'Down syndrome (DS), or trisomy 21, is a common disorder associated with several complex clinical phenotypes. Although several hypotheses have been put forward, it is unclear as to whether particular gene loci on chromosome 21 (HSA21) are sufficient to cause DS and its associated features. Here we present a high-resolution ... More
HIM-10 is required for kinetochore structure and function on Caenorhabditis elegans holocentric chromosomes.
Authors:Howe M, McDonald KL, Albertson DG, Meyer BJ
Journal:J Cell Biol
PubMed ID:11402066
'Macromolecular structures called kinetochores attach and move chromosomes within the spindle during chromosome segregation. Using electron microscopy, we identified a structure on the holocentric mitotic and meiotic chromosomes of Caenorhabditis elegans that resembles the mammalian kinetochore. This structure faces the poles on mitotic chromosomes but encircles meiotic chromosomes. Worm kinetochores ... More
Cytogenetic evidence for asexual evolution of bdelloid rotifers.
Authors:Mark Welch JL, Mark Welch DB, Meselson M
Journal:Proc Natl Acad Sci U S A
PubMed ID:14747655
DNA sequencing has shown individual bdelloid rotifer genomes to contain two or more diverged copies of every gene examined and has revealed no closely similar copies. These and other findings are consistent with long-term asexual evolution of bdelloids. It is not entirely ruled out, however, that bdelloid genomes consist of ... More
Telomere-associated endonuclease-deficient Penelope-like retroelements in diverse eukaryotes.
Authors:Gladyshev EA, Arkhipova IR
Journal:Proc Natl Acad Sci U S A
PubMed ID:17483479
The evolutionary origin of telomerases, enzymes that maintain the ends of linear chromosomes in most eukaryotes, is a subject of debate. Penelope-like elements (PLEs) are a recently described class of eukaryotic retroelements characterized by a GIY-YIG endonuclease domain and by a reverse transcriptase domain with similarity to telomerases and group ... More
Intramitochondrial localization of universal minicircle sequence-binding protein, a trypanosomatid protein that binds kinetoplast minicircle replication origins.
Authors:Abu-Elneel K, Robinson DR, Drew ME, Englund PT, Shlomai J
Journal:J Cell Biol
PubMed ID:11352934
Kinetoplast DNA (kDNA), the mitochondrial DNA of the trypanosomatid Crithidia fasciculata, is a unique structure containing 5,000 DNA minicircles topologically linked into a massive network. In vivo, the network is condensed into a disk-shaped structure. Replication of minicircles initiates at unique origins that are bound by universal minicircle sequence (UMS)-binding ... More