ChromaTide™ Alexa Fluor™ 488-5-UTP
ChromaTide™ Alexa Fluor™ 488-5-UTP
Invitrogen™

ChromaTide™ Alexa Fluor™ 488-5-UTP

Pueden usarse nucleidos dUTP, OBEA-dCTP y UTP etiquetados con colorante Molecular Probes™ ChromaTide™ para sintetizar sondas de ADN etiquetadas sinMás información
Have Questions?
Número de catálogoCantidad
C1140325 μl
Número de catálogo C11403
Precio (CLP)
717.053
Each
Añadir al carro de la compra
Cantidad:
25 μl
Precio (CLP)
717.053
Each
Añadir al carro de la compra
Pueden usarse nucleidos dUTP, OBEA-dCTP y UTP etiquetados con colorante Molecular Probes™ ChromaTide™ para sintetizar sondas de ADN etiquetadas sin necesidad de nucleidos etiquetados con radioisótopos peligrosos y costosos. Estos nucleidos pueden incorporarse mediante técnicas estándar de biología molecular; a continuación, las sondas etiquetadas pueden utilizarse en protocolos de hibridación in situ, micromatrices o transferencia. Los nucleidos etiquetados con colorante ChromaTide™ están disponibles en diferentes colores fluorescentes para facilitar el análisis multicolor.

Especificaciones de los nucleidos etiquetados con ChromaTide™:
• Ex/Em del colorante: Alexa Fluor™ 488-5-UTP (490/520 nm)
• Longitud del enlazador alquinilamino: 5 átomos


Métodos para incorporar nucleidos ChromaTide™ en sondas
• Translación de mellas (nick translation)
• Etiquetado de primers aleatorios
• Etiquetado final con desoxinucleotidil transferasa terminal
• Transcripción inversa
• Amplificación de PCR


Consulte Métodos para la incorporación enzimática de dUTP ChromaTide™ para obtener directrices específicas para cada uno de estos métodos.

Los colorantes fluorescentes Alexa Fluor™ y BODIPY™ generan excelentes sondas
Las sondas generadas con nucleidos etiquetados pueden usarse para técnicas multicolores como la hibridación in situ y la hibridación en matrices. Nuestros conjugados de colorantes patentados BODIPY™ y Alexa Fluor™ son excepcionalmente brillantes, fotoestables y esencialmente insensibles al pH. El estrecho perfil de emisión de los colorantes BODIPY™ ayuda a asegurar una superposición espectral mínima. Los colorantes Alexa Fluor™ son muy solubles en agua, al igual que las sondas de ADN fabricadas a partir de ellos, lo que los convierte en las etiquetas preferidas para la hibridación fluorescente in situ.

Los enlazadores largos mejoran el rendimiento
Los nucleidos dUTP y UTP ChromaTide™ se modifican en la posición C-5 de la uridina a través de un único enlazador alquinilamino, que proporciona un espaciador entre el nucleótido y el colorante para reducir las interacciones entre ellos. El número en el nombre del producto, por ejemplo, “12” en fluoresceína-12 dUTP, indica la longitud neta del separador, en átomos. Estos espaciadores dan como resultado conjugados más brillantes y una mayor accesibilidad a los reactivos de detección secundaria.

Para obtener una lista completa de nuestros reactivos ChromaTide™: Nucleidos etiquetados con aha y Molecular Probes ChromaTide™: Tabla 8.5.
Para obtener información adicional sobre estos reactivos de etiquetado, lea la Sección 8.2: Etiquetado de oligonucleótidos y ácidos nucleicos del Manual de Molecular Probes™.

Para uso exclusivo en investigación. No diseñado para uso diagnóstico o terapéutico en humanos ni en animales.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Método de etiquetadoEtiquetado directo
Etiqueta o tinteAlexa Fluor™ 488
Cantidad25 μl
Condiciones de envíoHielo seco
Concentración1 mM
Línea de productosAlexa Fluor, ChromaTide
Unit SizeEach
Contenido y almacenamiento
Almacenar en el congelador (de -5 a -30 °C) y proteger de la luz.

Preguntas frecuentes

I'm getting high background after labeling with ChromaTide nucleotides. What do you recommend I do?

You can try to purify the ChromaTide labeled probe with an appropriate spin column-based method to remove unincorporated ChromaTide nucleotides. Ethanol precipitation may not efficiently remove the unincorporated ChromaTide nucleotides, so a spin column will need to be used.

The nucleic acid probe is not fluorescent after labeling with ChromaTide nucleotides. What do you recommend I try?

- Check the base-to-dye ratio to determine the level of incorporation of the ChromaTide nucleotides. Since fluorescent detection may be affected by underlabeling, overlabeling, instrument sensitivity, or other factors, the base-to-dye ratio is a better indicator of incorporation efficiency.
- ChromaTide nucleotides may not have been incorporated well in the enzymatic labeling reaction. Make sure that the enzymatic method used is compatible with the particular fluorescent ChromaTide nucleotide, since some methods may not be appropriate for all applications. You may also need to further optimize the enzymatic incorporation method, for example by optimizing enzyme concentration, incubation time, concentration, and ratio of labeled and unlabeled nucleotides. For PCR, a lower fidelity polymerase may give higher incorporation rates; however, incorporation rates will be generally low using PCR.
- Check the fluorescent filter used for detection to make sure it is compatible with the dye. You can also test a small drop of the undiluted fluorescent ChromaTide nucleotide in your filter to make sure you can image the dye alone before it is conjugated to the oligonucleotide. The fluorescence emission of Alexa Fluor 647 is not visible by eye and will require a far-red imaging system for detection.

Can ChromaTide nucleotides be used for labeling nucleic acids in live cells?

No, they are not cell permeant so they are only suitable for in vitro incorporation methods. The fluorescent dyes and phosphate groups are too highly charged to allow the nucleotides to penetrate the membrane of an intact cell. Nonfluorescent nucleosides without phosphates such as EdU, EU, or BrdU can be used for live cell nucleic acid incorporation studies.

How do I determine the incorporation efficiency of the ChromaTide Labeling Nucleotides after enzymatic incorporation?

The base-to-dye ratio is determined by measuring the absorbance of the nucleic acid at 260 nm and the absorbance of the dye at its absorbance maximum. Using the extinction coefficients for the appropriate dye and nucleic acid, you can then calculate the base-to-dye ratio for the labeled nucleic acid using the Beer-Lambert law. Detailed instructions can be found in these product manuals: (http://tools.thermofisher.com/content/sfs/manuals/td07604.pdf, http://tools.thermofisher.com/content/sfs/manuals/td07605.pdf).

What is the average dye to base incorporation rate when enzymatically incorporating ChromaTide nucleotides?

The average incorporation is one dye for every 100-150 bases, so the ChromaTide fluorescently labeled nucleotides typically produce the lowest labeling rates of the nucleic acid labeling methods we offer.

Citations & References (6)

Citations & References
Abstract
A brain-specific microRNA regulates dendritic spine development.
Authors:Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, Greenberg ME
Journal:Nature
PubMed ID:16421561
'MicroRNAs are small, non-coding RNAs that control the translation of target messenger RNAs, thereby regulating critical aspects of plant and animal development. In the mammalian nervous system, the spatiotemporal control of mRNA translation has an important role in synaptic development and plasticity. Although a number of microRNAs have been isolated ... More
Inheritance of a pre-inactivated paternal X chromosome in early mouse embryos.
Authors:Huynh KD, Lee JT
Journal:Nature
PubMed ID:14661031
'In mammals, dosage compensation ensures equal X-chromosome expression between males (XY) and females (XX) by transcriptionally silencing one X chromosome in XX embryos. In the prevailing view, the XX zygote inherits two active X chromosomes, one each from the mother and father, and X inactivation does not occur until after ... More
Genome-wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules.
Authors:Blower MD, Feric E, Weis K, Heald R,
Journal:J Cell Biol
PubMed ID:18166649
RNA localization is of critical importance in many fundamental cell biological and developmental processes by regulating the spatial control of gene expression. To investigate how spindle-localized RNAs might influence mitosis, we comprehensively surveyed all messenger RNAs (mRNAs) that bound to microtubules during metaphase in both Xenopus laevis egg extracts and ... More
Single-molecule analysis of 1D diffusion and transcription elongation of T7 RNA polymerase along individual stretched DNA molecules.
Authors:Kim JH, Larson RG,
Journal:Nucleic Acids Res
PubMed ID:17526520
Using total internal reflection fluorescence microscopy, we directly visualize in real-time, the 1D Brownian motion and transcription elongation of T7 RNA polymerase along aligned DNA molecules bound to substrates by molecular combing. We fluorescently label T7 RNA polymerase with antibodies and use flow to convect them orthogonally to the DNA ... More
Drosophila Squid/hnRNP helps Dynein switch from a gurken mRNA transport motor to an ultrastructural static anchor in sponge bodies.
Authors:Delanoue R, Herpers B, Soetaert J, Davis I, Rabouille C,
Journal:Dev Cell
PubMed ID:17925228
In Drosophila oocytes, dorso-anterior transport of gurken mRNA requires both the Dynein motor and the heterogeneous nuclear ribonucleoprotein (hnRNP) Squid. We show that gurken transcripts are transported directly on microtubules by Dynein in nonmembranous electron-dense transport particles that also contain Squid and the transport cofactors Egalitarian and Bicaudal-D. At its ... More