E. coli químicamente competente de One Shot™ BL21 Star™ (DE3)
<i>E. coli</i> químicamente competente de One Shot&trade; BL21 Star&trade; (DE3)
Invitrogen™

E. coli químicamente competente de One Shot™ BL21 Star™ (DE3)

Los E. coli químicamente competentes One Shot™ BL21 Star™ (DE3) se han diseñado para aplicaciones que requieren elevados niveles deMás información
Have Questions?
Número de catálogoCantidad
C60100321 x 50 μL/tubo
Número de catálogo C601003
Precio (CLP)
499.010
Each
Añadir al carro de la compra
Cantidad:
21 x 50 μL/tubo
Precio (CLP)
499.010
Each
Añadir al carro de la compra
Los E. coli químicamente competentes One Shot™ BL21 Star™ (DE3) se han diseñado para aplicaciones que requieren elevados niveles de expresión de proteínas recombinantes no tóxicas a partir de sistemas de expresión con bajo número de copias basados en el promotor T7 (por ejemplo, Vectores pET Champion™). Las células químicamente competentes One Shot™ BL21 Star™ (DE3) se suministran con una eficacia de transformación de 1 x 108 cfu/µg de ADN plasmídico. Características de las células One Shot™ BL21 Star™:

• Contienen un genotipo que promueve un alto nivel de estabilidad de ARN mensajero (ARNm) y producción de proteínas
• Se han optimizado para su uso con plásmidos con bajo número de copias basados en el promotor T7
• Se suministran en formato de tubo único de un solo uso, que permite que todos los pasos de la transformación se produzcan en el mismo tubo, lo que ahorra tiempo y evita la contaminación

Expresión mejorada de proteínas recombinantes no tóxicas
Las células One Shot™ BL21 Star™ (DE3) contienen el lisógeno DE3 que transporta el gen para la ARN polimerasa T7 bajo el control del promotor lacUV5. La isopropil galactosidasa (IPTG) es necesaria para inducir la expresión. Esta cepa también ofrece una mayor estabilidad del ARNm debido a una mutación del gen ARNasa E (rne131) que reduce los niveles de ARNasa natural y la degradación del ARNm, lo que aumenta la estabilidad de los transcritos de ARNm y la producción de proteínas. La expresión de proteínas mejora aún más por la ausencia de las proteasas de la membrana externa (OmpT) e lon, lo que reduce la degradación de las proteínas heterólogas.

Nota: las cepas BL21 Star™ tienen una mayor expresión basal de genes heterólogos que las cepas BL21 debido a una mayor estabilidad del ARNm. Por lo tanto, estas cepas pueden no ser útiles para la expresión de genes tóxicos.

Genotipo:F-ompT hsdSB (rB-, mB-) galdcmrne131 (DE3)

Encuentre la cepa y el formato que necesite
También ofrecemos muchas otras cepas y formatos diferentes de células químicamente competentes y células electrocompetentes para ayudarle a satisfacer sus necesidades específicas de transformación. Para la expresión de proteínas tóxicas puede utilizar E. coli químicamente competente BL21-AI™ One Shot™.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Resistencia bacteriana a los antibióticosNo
Tramado azul/blancoNo
Clonación de ADN metiladoNo
Contiene el episoma F'Carece de episoma F'
Compatibilidad de alto rendimientoNo compatible con alto rendimiento (manual)
Mejora la calidad de los plásmidosNo
Improves Protein StabilityYes (lon, ompT)
Improves RNA StabilityYes (rne131)
Preparación de ADN no metiladoYes (dcm)
Línea de productosOne Shot
Tipo de productoCélula competente
Cantidad21 x 50 μL/tubo
Reduce la recombinaciónNo
Condiciones de envíoDry Ice
Resistente al fago T1 (tonA)No
Toxic ProteinsNo
Nivel de eficiencia de transformaciónEficacia media (10^8-10^9 ufc⁄µ g)
FormatoTubo
PromotorT7
EspecieE. coli
Unit SizeEach
Contenido y almacenamiento
Contiene:
•E.coli One Shot™ BL21 Star™ (DE3): 20 viales, 50 µl cada uno (total de 1 ml)
• ADN pUC19 (10 pg/ul): 1 vial, 50 µl
•, medio SOC: 1 frasco, 6 ml

Almacenar las células competentes a - 80 °C. Almacene el producto pUC19 DNA a - 20 °C. Almacenar el medio S.O.C. a 4 °C o a temperatura ambiente.

Preguntas frecuentes

My gene of interest is toxic to bacterial cells. Are there any precautions you can suggest?

Several precautions may be taken to prevent problems resulting from basal level expression of a toxic gene of interest. These methods all assume that the T7-based or Champion-based expression plasmid has been correctly designed and created.

- Propagate and maintain your expression plasmid in a strain that does not contain T7 RNA polymerase (i.e., DH5α).
- If using BL21 (DE3) cells, try growing cells at room temperature rather than 37 degrees C for 24-48 hr.
- Perform a fresh transformation using a tightly regulated E. coli strain, such as BL21-AI cells.
- After following the transformation protocol, plate the transformation reaction on LB plates containing 100 µg/mL ampicillin and 0.1% glucose. The presence of glucose represses basal expression of T7 RNA polymerase.
- Following transformation of BL21-AI cells, pick 3 or 4 transformants and inoculate directly into fresh LB medium containing 100 µg/mL ampicillin or 50 µg/mL carbenicillin (and 0.1% glucose, if desired). When the culture reaches an OD600 of 0.4, induce expression of the recombinant protein by adding L-arabinose to a final concentration of 0.2%.
- When performing expression experiments, supplement the growth medium with 0.1% glucose in addition to 0.2% arabinose.
- Try a regulated bacterial expression system such as our pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system. How do I know if I'm seeing degradation of my protein or if what I’m seeing is codon usage bias?

Typically, if you see 1-2 dominant bands, translation stopped prematurely due to codon usage bias. With degradation, you usually see a ladder of bands. With degradation, you can try using a protease inhibitor and add it to the lysis buffer to help prevent degradation. If degradation is the issue, a time point experiment can be done to determine the best time to harvest the cells.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm trying to express my protein using a bacterial expression system and am getting inclusion bodies. What should I do?

If you are having a solubility issue, try to decrease the temperature or decrease the amount of IPTG used for induction. You can also try a different, more stringent cell strain for expression. Adding 1% glucose to the bacterial culture medium during expression can also help.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I'm getting low protein yield from my bacterial expression system. What can I do to improve this?

- Inoculate from fresh bacterial cultures, since higher protein yields are generally obtained from a fresh bacterial colony.

- Check the codon usage in the recombinant protein sequence for infrequently used codons. Replacing the rare codons with more commonly used codons can significantly increase expression levels. For example, the arginine codons AGG and AGA are used infrequently by E. coli, so the level of tRNAs for these codons is low.

- Add protease inhibitors, such as PMSF, to buffers during protein purification. Use freshly made PMSF, since PMSF loses effectiveness within 30 min of dilution into an aqueous solution.

- If you are using ampicillin for selection in your expression experiments, you may be experiencing plasmid instability due to the absence of selective conditions. This occurs as the ampicillin is destroyed by β-lactamase or hydrolyzed under the acidic media conditions generated by bacterial metabolism. You may want to substitute carbenicillin for ampicillin in your transformation and expression experiments.

- The recombinant protein may be toxic to bacterial cells. Try a tighter regulation system for competent cell expression such as BL21-AI. You may also consider trying a different expression system such as the pBAD system.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

My cells are growing very slowly, and I'm not getting any protein expression from my baterial expression system. What can I do to fix this?

This typically occurs when your gene of interest is toxic. Try using a tighter regulation system, such as BL21 (DE3) (pLysS) or BL21 (DE3) (pLysE), or BL21(AI).

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Citations & References (10)

Citations & References
Abstract
Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery.
Authors:McKevitt M, Patel K, Smajs D, Marsh M, McLoughlin M, Norris SJ, Weinstock GM, Palzkill T,
Journal:Genome Res
PubMed ID:12805273
'A topoisomerase-based method was used to clone PCR products encoding 991 of the 1041 open reading frames identified in the genome sequence of the bacterium that causes syphilis, Treponema pallidum subsp. pallidum. Cloning the open reading frames into the univector plasmid system permitted the rapid conversion of the original clone ... More
Human DNA polymerase N (POLN) is a low fidelity enzyme capable of error-free bypass of 5S-thymine glycol.
Authors:Takata K, Shimizu T, Iwai S, Wood RD,
Journal:J Biol Chem
PubMed ID:16787914
'Human DNA polymerase N (POLN or pol nu) is the most recently discovered nuclear DNA polymerase in the human genome. It is an A-family DNA polymerase related to Escherichia coli pol I, human POLQ, and Drosophila Mus308. We report the first purification of the recombinant enzyme and examination of its ... More
ATP stimulates signal recognition particle (SRP)/FtsY-supported protein integration in chloroplasts.
Authors: Yuan Jianguo; Kight Alicia; Goforth Robyn L; Moore Misty; Peterson Eric C; Sakon Joshua; Henry Ralph;
Journal:J Biol Chem
PubMed ID:12105232
'The signal recognition particle (SRP) and its receptor (FtsY in prokaryotes) are essential for cotranslational protein targeting to the endoplasmic reticulum in eukaryotes and the cytoplasmic membrane in prokaryotes. An SRP/FtsY-like protein targeting/integration pathway in chloroplasts mediates the posttranslational integration of the light-harvesting chlorophyll a/b-binding protein (LHCP) into thylakoid membranes. ... More
Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system.
Authors:Studier FW
Journal:J Mol Biol
PubMed ID:2023259
'Bacteriophage T7 lysozyme, a natural inhibitor of T7 RNA polymerase, can reduce basal activity from an inducible gene for T7 RNA polymerase and allow relatively toxic genes to be established in the same cell under control of a T7 promoter. Low levels of T7 lysozyme supplied by plasmids pLysS or ... More
Structural mechanism for the carriage and release of thyroxine in the blood.
Authors:Zhou A, Wei Z, Read RJ, Carrell RW,
Journal:Proc Natl Acad Sci U S A
PubMed ID:16938877
'The hormones that most directly control tissue activities in health and disease are delivered by two noninhibitory members of the serpin family of protease inhibitors, thyroxine-binding globulin (TBG) and corticosteroid-binding globulin. The structure of TBG bound to tetra-iodo thyroxine, solved here at 2.8 A, shows how the thyroxine is carried ... More