Dextran, Tetramethylrhodamine, 10,000 MW, Lysine Fixable (fluoro-Ruby)
Dextran, Tetramethylrhodamine, 10,000 MW, Lysine Fixable (fluoro-Ruby)
Invitrogen™

Dextran, Tetramethylrhodamine, 10,000 MW, Lysine Fixable (fluoro-Ruby)

Los dextranos marcados son polisacáridos hidrófilos que se usan más comúnmente en estudios de microscopía para supervisar la división deMás información
Have Questions?
Número de catálogoCantidad
D181725 mg
Número de catálogo D1817
Precio (CLP)
338.614
Each
Añadir al carro de la compra
Cantidad:
25 mg
Precio (CLP)
338.614
Each
Añadir al carro de la compra
Los dextranos marcados son polisacáridos hidrófilos que se usan más comúnmente en estudios de microscopía para supervisar la división de células, registrar el movimiento de las células vivas e informar de las propiedades hidrodinámicas de la matriz citoplásmica. El dextrano etiquetado se introduce comúnmente en las células mediante microinyección.

¿Necesita otro espectro de emisión o un seguimiento más prolongado? Consulte nuestros otros productos de seguimiento de células de mamífero.

Especificaciones del dextrano:

Etiqueta (Ex/Em): Tetrametilrodamina (555/580)
Tamaño: 10.000 PM
Carga: aniónica
Fijable: Fijable con lisina

Altos estándares de fabricación de dextranos de Molecular Probes™
Ofrecemos más de 50 conjugados de dextranos fluorescentes y biotinilados en diversos rangos de peso molecular. Los dextranos son polisacáridos hidrofílicos que se caracterizan por su peso molecular de alto a moderado, su buena solubilidad en agua y su baja toxicidad. También suelen tener baja inmunogenicidad. Los dextranos son biológicamente inertes debido a sus vínculos poli-(α-D-1,6-glucosa) poco comunes, que los hacen resistentes a la incisión por la mayoría de las glucosidasas celulares endógenas.

En la mayoría de los casos, los dextranos fluorescentes Molecular Probes™ son mucho más brillantes y tienen una mayor carga negativa que los dextranos disponible de otras fuentes. Además, utilizamos métodos rigurosos para eliminar todo el colorante no conjugado posible y, a continuación, probar nuestros conjugados de dextranos por cromatografía de capa fina para ayudar a garantizar la ausencia de contaminantes de bajo peso molecular.

Una amplia selección de sustituyentes y pesos moleculares
Los dextranos Molecular Probes™ se conjugan con biotina o una amplia variedad de fluoróforos, incluidos siete de nuestros colorantes Alexa Fluor™ (Molecular Probes dextran conjugates–Table 14.4 [Conjugados de dextranos Molecular Probes, tabla 14.4]) y están disponibles en estos pesos moleculares nominales (PM): 3000; 10.000; 40.000; 70.000; 500.000 y 2.000.000 daltons.

Carga neta y capacidad de fijación del dextrano
Empleamos acoplamiento con succinimidilo de nuestros colorantes a la molécula de dextrano, que, en la mayoría de los casos, da lugar a un dextrano neutro o aniónico. La reacción usada para producir los dextranos Rhodamine Green™ y Alexa Fluor 488 hacen que el producto final sea neutro, aniónico o catiónico. Los dextranos Alexa Fluor, Cascade Blue, Lucifer Yellow, fluoresceína y Oregon Green son intrínsecamente aniónicos, mientras que la mayoría de los dextranos etiquetados con los tintes rodamina de zwiterión B, tetrametilrodamina y Texas Red™ son esencialmente neutros. Para producir más dextranos altamente aniónicos, hemos desarrollado un procedimiento exclusivo para agregar grupos con carga negativa a los portadores de dextranos; estos productos se denominan dextranos “polianiónicos”.

Algunas aplicaciones requieren que el trazador de dextranos se trate con formaldehído o glutaraldehído para su posterior análisis. Para estas aplicaciones, ofrecemos versiones que se pueden “fijar con lisina” de la mayoría de nuestros conjugados de dextranos de fluoróforos o biotina. Estos dextranos se han unido covalentemente residuos de lisina que permiten a conjugar los trazadores de dextranos con las biomoléculas circundantes mediante la fijación con aldehído para la detección posterior mediante técnicas imunohistoquímias y ultraestructurales. También hemos demostrado que 10.000 PM de conjugados de dextranos Alexa Fluor se pueden fijar con fijadores basados en aldehído.

Aplicaciones clave con dextranos etiquetados
Hay numerosas citas que describen el uso de dextranos etiquetados. Estos son algunos de los usos más comunes:

Rastreo neuronal (anterógrado y retrógrado) en células vivas
Rastreo de linaje celular en células vivas
Rastreo neuroanatómico
Investigación de las comunicaciones intercelulares (p. ej., en uniones de comunicación, durante la cicatrización de heridas y durante el desarrollo embrionario)
Investigación de la permeabilidad vascular y la integridad de la barrera hematoencefálica
Seguimiento de la endocitosis
Supervisión de la acidificación (algunos conjugados de dextranos son sensibles al pH)
Estudio de las propiedades hidrodinámicas de la matriz citoplasmática

Solo para uso en investigación. No diseñado para uso terapéutico o de diagnóstico en animales o humanos.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Etiqueta o tinteColorantes clásicos
Tipo de productoDextrano
Cantidad25 mg
Condiciones de envíoTemperatura ambiente
Excitation/Emission555/580 nm
Línea de productosInvitrogen
Unit SizeEach
Contenido y almacenamiento
Almacenar en el congelador (de -5 a -30 °C) y proteger de la luz.

Preguntas frecuentes

Why do I lose all signal from my neuronal tracer when I do a methanol fixation on my cells?

If the tracer you chose is a lipophilic dye and fix with methanol, the lipids are lost with the methanol. If you have to use methanol fixation then choose a tracer that will covalently bind to proteins in the neurons.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I stained my cells with a lipophilic cyanine dye, like DiI, but the signal was lost when I tried to follow up with antibody labeling. Why?

Since these dyes insert into lipid membranes, any disruption of the membranes leads to loss of the dye. This includes permeabilization with detergents like Triton X-100 or organic solvents like methanol. Permeabilization is necessary for intracellular antibody labeling, leading to loss of the dye. Instead, a reactive dye such as CFDA SE should be used to allow for covalent attachment to cellular components, thus providing for better retention upon fixation and permeabilization.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I labeled my neurons with DiI and then fixed and permeabilized and now I have no signal. What did I do wrong?

DiI is a lipophilic dye that resides mostly in lipids in the cell, when cells are permeabilized with detergent or fixed using alcohol this strips away the lipid and the dye. If permeabilization is required CM-DiI can be used because this binds covalently to proteins in the membrane; some signal is lost upon fixation/permeabilization, but enough signal should be retained to make detection possible.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Is there a way to label individual neurons without microinjecting?

The solid and crystalline forms of DiI and other related dyes (Cat. Nos. D282, D3911, D7757, and D12731) are sometimes placed in contact with a specific neuron where it will travel down the cell by lateral diffusion via the membrane. Alternatively, our NeuroTrace Tissue Labeling Paste can be scooped onto a needle and placed onto particular neurons.

Please see the information below for a comparison of our neuronal cell labeling methods:
Product:Method of labeling: Labeling intensity: Features
Neuron-specific antibodies: Primary antibodies directed to proteins expressed in neuronal cells: Proportional to the amount of protein expressed: Provides the only neuronal specific labeling method
Lipophilic neuronal ytracers: Hydrophobic dyes are incorporated into lipids in the cell: This labeling method provides the most intense labeling becuase of the abundant amount of lipids: Allows tracing of neurons throughout the sample
Membrane potential indicators: Dyes are loaded into live cells in aqueous buffers: Depends on either changes in structures due to the electrical field they are in, or dye influx due to depolarization: Changes in membrane potential play a central role in physiological processes, including nerve-impulse propagation, muscle contraction, and cell signaling

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What products do you have for neuronal tracing?

Please check out this web page (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing.html) for details.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (114)

Citations & References
Abstract
Topographical organization in the nucleus accumbens of afferents from the basolateral amygdala and efferents to the lateral hypothalamus.
Authors:Kirouac GJ, Ganguly PK
Journal:Neuroscience
PubMed ID:7675191
The basolateral region of the amygdala and the lateral hypothalamic area are involved in cardiovascular regulation. The aim of the present investigation was to determine if the terminal field of afferent projections from the basolateral nucleus of the amygdala to the nucleus accumbens overlap with the origin of the efferent ... More
Improved retrograde axonal transport and subsequent visualization of tetramethylrhodamine (TMR) -dextran amine by means of an acidic injection vehicle and antibodies against TMR.
Authors:Kaneko T, Saeki K, Lee T, Mizuno N
Journal:J Neurosci Methods
PubMed ID:8740593
'We studied the ability of various dextran amines (DA) to retrogradely label cortical neurons to the full extent of their dendritic configurations. Corticothalamic neurons were labeled by pressure injection of DA into the ventrobasal thalamic nuclei of the rat brain. Of fluorescein-, Texas Red-, Cascade Blue- and tetramethylrhodamine (TMR)-DAs of ... More
Time-lapse analysis and mathematical characterization elucidate novel mechanisms underlying muscle morphogenesis.
Authors:Snow CJ, Goody M, Kelly MW, Oster EC, Jones R, Khalil A, Henry CA,
Journal:PLoS Genet
PubMed ID:18833302
'Skeletal muscle morphogenesis transforms short muscle precursor cells into long, multinucleate myotubes that anchor to tendons via the myotendinous junction (MTJ). In vertebrates, a great deal is known about muscle specification as well as how somitic cells, as a cohort, generate the early myotome. However, the cellular mechanisms that generate ... More
Impaired trafficking of connexins in androgen-independent human prostate cancer cell lines and its mitigation by alpha-catenin.
Authors:Govindarajan R, Zhao S, Song XH, Guo RJ, Wheelock M, Johnson KR, Mehta PP
Journal:J Biol Chem
PubMed ID:12205082
'Gap junctions, composed of connexins, provide a pathway of direct intercellular communication for the diffusion of small molecules between cells. Evidence suggests that connexins act as tumor suppressors. We showed previously that expression of connexin-43 and connexin-32 in an indolent prostate cancer cell line, LNCaP, resulted in gap junction formation ... More
Retrograde transport of sodium selenite and intracellular injection of micro-ruby: a combined method to describe the morphology of zinc-rich neurones.
Authors:Miró-Bernié N, Sancho-Bielsa FJ, López-García C, Pérez-Clausell J
Journal:J Neurosci Methods
PubMed ID:12906949
'Zinc is found in synaptic vesicles in a large number of glutamatergic systems. Its involvement in neurotransmission and neurological disorders has been suggested. There are methods for tracing these circuits, but they do not fill the dendritic tree. In this study, extracellular selenite injections in vivo were combined with intracellular ... More