Dextran, Rhodamine B, 70,000 MW, Neutral
Dextran, Rhodamine B, 70,000 MW, Neutral
Invitrogen™

Dextran, Rhodamine B, 70,000 MW, Neutral

Los dextranos marcados son polisacáridos hidrófilos que se usan más comúnmente en estudios de microscopía para supervisar la división deMás información
Have Questions?
Número de catálogoCantidad
D184125 mg
Número de catálogo D1841
Precio (CLP)
312.709
Each
Añadir al carro de la compra
Cantidad:
25 mg
Precio (CLP)
312.709
Each
Añadir al carro de la compra
Los dextranos marcados son polisacáridos hidrófilos que se usan más comúnmente en estudios de microscopía para supervisar la división de células, registrar el movimiento de las células vivas e informar de las propiedades hidrodinámicas de la matriz citoplásmica. El dextrano etiquetado se introduce comúnmente en las células mediante microinyección.

¿Necesita otro espectro de emisión o un seguimiento más prolongado? Consulte nuestros otros productos de seguimiento de células de mamífero.

Especificaciones del dextrano:

Etiqueta (Ex/Em): Rodamina B (570/590)
Tamaño: 70 000 PM
Carga: Zwitteriónico
Fijable: No fijable

Altos estándares de fabricación de dextranos de Molecular Probes™
Ofrecemos más de 50 conjugados de dextranos fluorescentes y biotinilados en diversos rangos de peso molecular. Los dextranos son polisacáridos hidrofílicos que se caracterizan por su peso molecular de alto a moderado, su buena solubilidad en agua y su baja toxicidad. También suelen tener baja inmunogenicidad. Los dextranos son biológicamente inertes debido a sus vínculos poli-(α-D-1,6-glucosa) poco comunes, que los hacen resistentes a la incisión por la mayoría de las glucosidasas celulares endógenas.

En la mayoría de los casos, los dextranos fluorescentes Molecular Probes™ son mucho más brillantes y tienen una mayor carga negativa que los dextranos disponible de otras fuentes. Además, utilizamos métodos rigurosos para eliminar todo el colorante no conjugado posible y, a continuación, probar nuestros conjugados de dextranos por cromatografía de capa fina para ayudar a garantizar la ausencia de contaminantes de bajo peso molecular.

Una amplia selección de sustituyentes y pesos moleculares
Los dextranos Molecular Probes™ se conjugan con biotina o una amplia variedad de fluoróforos, incluidos siete de nuestros colorantes Alexa Fluor™ (Molecular Probes dextran conjugates–Table 14.4 [Conjugados de dextranos Molecular Probes, tabla 14.4]) y están disponibles en estos pesos moleculares nominales (PM): 3000; 10.000; 40.000; 70.000; 500.000 y 2.000.000 daltons.

Carga neta y capacidad de fijación del dextrano
Empleamos acoplamiento con succinimidilo de nuestros colorantes a la molécula de dextrano, que, en la mayoría de los casos, da lugar a un dextrano neutro o aniónico. La reacción usada para producir los dextranos Rhodamine Green™ y Alexa Fluor 488 hacen que el producto final sea neutro, aniónico o catiónico. Los dextranos Alexa Fluor, Cascade Blue, Lucifer Yellow, fluoresceína y Oregon Green son intrínsecamente aniónicos, mientras que la mayoría de los dextranos etiquetados con los tintes rodamina de zwiterión B, tetrametilrodamina y Texas Red™ son esencialmente neutros. Para producir más dextranos altamente aniónicos, hemos desarrollado un procedimiento exclusivo para agregar grupos con carga negativa a los portadores de dextranos; estos productos se denominan dextranos “polianiónicos”.

Algunas aplicaciones requieren que el trazador de dextranos se trate con formaldehído o glutaraldehído para su posterior análisis. Para estas aplicaciones, ofrecemos versiones que se pueden “fijar con lisina” de la mayoría de nuestros conjugados de dextranos de fluoróforos o biotina. Estos dextranos se han unido covalentemente residuos de lisina que permiten a conjugar los trazadores de dextranos con las biomoléculas circundantes mediante la fijación con aldehído para la detección posterior mediante técnicas imunohistoquímias y ultraestructurales. También hemos demostrado que 10.000 PM de conjugados de dextranos Alexa Fluor se pueden fijar con fijadores basados en aldehído.

Aplicaciones clave con dextranos etiquetados
Hay numerosas citas que describen el uso de dextranos etiquetados. Estos son algunos de los usos más comunes:

Rastreo neuronal (anterógrado y retrógrado) en células vivas
Rastreo de linaje celular en células vivas
Rastreo neuroanatómico
Investigación de las comunicaciones intercelulares (p. ej., en uniones de comunicación, durante la cicatrización de heridas y durante el desarrollo embrionario)
Investigación de la permeabilidad vascular y la integridad de la barrera hematoencefálica
Seguimiento de la endocitosis
Supervisión de la acidificación (algunos conjugados de dextranos son sensibles al pH)
Estudio de las propiedades hidrodinámicas de la matriz citoplasmática

Solo para uso en investigación. No diseñado para uso terapéutico o de diagnóstico en animales o humanos.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Etiqueta o tinteColorantes clásicos
Tipo de productoDextrano
Cantidad25 mg
Condiciones de envíoTemperatura ambiente
Excitation/Emission570/590 nm
Línea de productosInvitrogen
Unit SizeEach
Contenido y almacenamiento
Almacenar en el congelador (de -5 a -30 °C) y proteger de la luz.

Preguntas frecuentes

What is the excitation and emission wavelength for rhodamine?

Rhodamine is a generic term for a wide variety of cationic dyes whose fluorescence emission can range from green, orange to red. The table below lists the excitation and emission maxima (nm), as well as molar extinction coefficients (“EC”; cm-1 M-1), for various rhodamine dyes (data derived with dye dissolved in methanol).

Dye Excitation Emission EC
Rhodamine B 568 583 88,000
Rhodamine 123 507 529 101,000
Rhodamine 110 499 521 92,000
Rhodamine 6G 528 551 105,000
XRITC 572 596 92,000


Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (13)

Citations & References
Abstract
Structure and composition of aggregates in two large European rivers, based on confocal laser scanning microscopy and image and statistical analyses.
Authors:Luef B, Neu TR, Zweimüller I, Peduzzi P,
Journal:Appl Environ Microbiol
PubMed ID:19633114
Floating riverine aggregates are composed of a complex mixture of inorganic and organic components from their respective aquatic habitats. Their architecture and integrity are supplemented by the presence of extracellular polymeric substances of microbial origin. They are also a habitat for virus-like particles, bacteria, archaea, fungi, algae, and protozoa. In ... More
Inositol 1,4,5-trisphosphate-dependent oscillations of luminal [Ca2+] in permeabilized HSY cells.
Authors:Tanimura A, Turner RJ
Journal:J Biol Chem
PubMed ID:8940075
Oscillations in intracellular Ca2+ concentration ([Ca2+]i) are thought to play an important role in phosphoinositide-linked Ca2+ signaling events. We demonstrate corresponding inositol 1,4, 5-trisphosphate (IP3)-dependent oscillations of Ca2+ concentration within the lumen of the IP3-sensitive stores ([Ca2+]L) of saponin-permeabilized HSY cells by monitoring [Ca2+]L with the fluorescent Ca2+ indicator Mag-fura-2. ... More
Different transport routes for high density lipoprotein and its associated free sterol in polarized hepatic cells.
Authors:Wüstner D, Mondal M, Huang A, Maxfield FR
Journal:J Lipid Res
PubMed ID:14679167
We analyzed the intracellular transport of HDL and its associated free sterol in polarized human hepatoma HepG2 cells. Using pulse-chase protocols, we demonstrated that HDL labeled with Alexa 488 at the apolipoprotein (Alexa 488-HDL) was internalized by a scavenger receptor class B type I (SR-BI)-dependent process at the basolateral membrane ... More
Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis.
Authors:
Journal:Elife
PubMed ID:27623009
miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110.
Authors:
Journal:Nature
PubMed ID:24899310