Dextran, Biotin, 10,000 MW, Lysine Fixable (BDA-10,000)
Dextran, Biotin, 10,000 MW, Lysine Fixable (BDA-10,000)
Invitrogen™

Dextran, Biotin, 10,000 MW, Lysine Fixable (BDA-10,000)

Los dextranos marcados son polisacáridos hidrófilos que se usan más comúnmente en estudios de microscopía para supervisar la división deMás información
Have Questions?
Número de catálogoCantidad
D195625 mg
Número de catálogo D1956
Precio (CLP)
412.363
Each
Añadir al carro de la compra
Cantidad:
25 mg
Precio (CLP)
412.363
Each
Añadir al carro de la compra
Los dextranos marcados son polisacáridos hidrófilos que se usan más comúnmente en estudios de microscopía para supervisar la división de células, registrar el movimiento de las células vivas e informar de las propiedades hidrodinámicas de la matriz citoplásmica. El dextrano etiquetado se introduce comúnmente en las células mediante microinyección.

¿Necesita otro espectro de emisión o un seguimiento más prolongado? Consulte nuestros otros productos de seguimiento de células de mamífero.

Especificaciones del dextrano:

Etiqueta (Ex/Em): Ninguna (biotinilado)
Tamaño: 10.000 PM
Carga: aniónica
Fijable: Fijable con lisina

Altos estándares de fabricación de dextranos de Molecular Probes™
Ofrecemos más de 50 conjugados de dextranos fluorescentes y biotinilados en diversos rangos de peso molecular. Los dextranos son polisacáridos hidrofílicos que se caracterizan por su peso molecular de alto a moderado, su buena solubilidad en agua y su baja toxicidad. También suelen tener baja inmunogenicidad. Los dextranos son biológicamente inertes debido a sus vínculos poli-(α-D-1,6-glucosa) poco comunes, que los hacen resistentes a la incisión por la mayoría de las glucosidasas celulares endógenas.

En la mayoría de los casos, los dextranos fluorescentes Molecular Probes™ son mucho más brillantes y tienen una mayor carga negativa que los dextranos disponible de otras fuentes. Además, utilizamos métodos rigurosos para eliminar todo el colorante no conjugado posible y, a continuación, probar nuestros conjugados de dextranos por cromatografía de capa fina para ayudar a garantizar la ausencia de contaminantes de bajo peso molecular.

Una amplia selección de sustituyentes y pesos moleculares
Los dextranos Molecular Probes™ se conjugan con biotina o una amplia variedad de fluoróforos, incluidos siete de nuestros colorantes Alexa Fluor™ (Molecular Probes dextran conjugates–Table 14.4 [Conjugados de dextranos Molecular Probes, tabla 14.4]) y están disponibles en estos pesos moleculares nominales (PM): 3000; 10.000; 40.000; 70.000; 500.000 y 2.000.000 daltons.

Carga neta y capacidad de fijación del dextrano
Empleamos acoplamiento con succinimidilo de nuestros colorantes a la molécula de dextrano, que, en la mayoría de los casos, da lugar a un dextrano neutro o aniónico. La reacción usada para producir los dextranos Rhodamine Green™ y Alexa Fluor 488 hacen que el producto final sea neutro, aniónico o catiónico. Los dextranos Alexa Fluor, Cascade Blue, Lucifer Yellow, fluoresceína y Oregon Green son intrínsecamente aniónicos, mientras que la mayoría de los dextranos etiquetados con los tintes rodamina de zwiterión B, tetrametilrodamina y Texas Red™ son esencialmente neutros. Para producir más dextranos altamente aniónicos, hemos desarrollado un procedimiento exclusivo para agregar grupos con carga negativa a los portadores de dextranos; estos productos se denominan dextranos “polianiónicos”.

Algunas aplicaciones requieren que el trazador de dextranos se trate con formaldehído o glutaraldehído para su posterior análisis. Para estas aplicaciones, ofrecemos versiones que se pueden “fijar con lisina” de la mayoría de nuestros conjugados de dextranos de fluoróforos o biotina. Estos dextranos se han unido covalentemente residuos de lisina que permiten a conjugar los trazadores de dextranos con las biomoléculas circundantes mediante la fijación con aldehído para la detección posterior mediante técnicas imunohistoquímias y ultraestructurales. También hemos demostrado que 10.000 PM de conjugados de dextranos Alexa Fluor se pueden fijar con fijadores basados en aldehído.

Aplicaciones clave con dextranos etiquetados
Hay numerosas citas que describen el uso de dextranos etiquetados. Estos son algunos de los usos más comunes:

Rastreo neuronal (anterógrado y retrógrado) en células vivas
Rastreo de linaje celular en células vivas
Rastreo neuroanatómico
Investigación de las comunicaciones intercelulares (p. ej., en uniones de comunicación, durante la cicatrización de heridas y durante el desarrollo embrionario)
Investigación de la permeabilidad vascular y la integridad de la barrera hematoencefálica
Seguimiento de la endocitosis
Supervisión de la acidificación (algunos conjugados de dextranos son sensibles al pH)
Estudio de las propiedades hidrodinámicas de la matriz citoplasmática

Solo para uso en investigación. No diseñado para uso terapéutico o de diagnóstico en animales o humanos.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Etiqueta o tinteBiotina y otros haptenos
Tipo de productoDextrano
Cantidad25 mg
Condiciones de envíoTemperatura ambiente
Línea de productosInvitrogen
Unit SizeEach
Contenido y almacenamiento
Almacenar en congelador (de -5 a -30 °C).

Citations & References (95)

Citations & References
Abstract
Biotin-dextran: fast retrograde tracing of sciatic nerve motoneurons.
Authors:Todorova N, Rodziewicz GS
Journal:J Neurosci Methods
PubMed ID:8618412
We present evidence that biotin-dextran (BD) provides good fast retrograde tracing in the rat sciatic nerve. Using BD injected distal to a crush injury of either tibial or common peroneal nerves, spinal cord motoneuron counts after 48 h compare favorably with counts obtained using horseradish peroxidase. Advantages of BD include ... More
Niemann-Pick C1 functions in regulating lysosomal amine content.
Authors:Kaufmann AM, Krise JP,
Journal:J Biol Chem
PubMed ID:18591242
'Mutations in the late endosomal/lysosomal membrane protein Niemann-Pick C1 (NPC1) are known to cause a generalized block in retrograde vesicle-mediated transport, resulting in the hyper-accumulation of multiple lysosomal cargos. An important, yet often overlooked, category of lysosomal cargo includes the vast array of small molecular weight amine-containing molecules that are ... More
Versatile, high-resolution anterograde labeling of vagal efferent projections with dextran amines.
Authors:Walter GC, Phillips RJ, Baronowsky EA, Powley TL,
Journal:J Neurosci Methods
PubMed ID:19056424
'None of the anterograde tracers used to label and investigate vagal preganglionic neurons projecting to the viscera has proved optimal for routine and extensive labeling of autonomic terminal fields. To identify an alternative tracer protocol, the present experiment evaluated whether dextran conjugates, which have produced superior results in the CNS, ... More
The anterograde neuroanatomical tracer biotinylated dextran-amine: comparison with the tracer Phaseolus vulgaris-leucoagglutinin in preparations for electron microscopy.
Authors:Wouterlood FG, Jorritsma-Byham B
Journal:J Neurosci Methods
PubMed ID:7690870
'We investigated the properties of biotinylated dextran-amine (BDA) as a neuroanatomical tracer at the electron microscopic level and we compared the results with those obtained previously with another tracer, the lectin Phaseolus vulgaris-leucoagglutinin (PHA-L). BDA was injected into various brain areas of rats. Following survival and fixation, vibratome sections were ... More
Gap junctional communication in the early Xenopus embryo.
Authors:Landesman Y, Goodenough DA, Paul DL
Journal:J Cell Biol
PubMed ID:10953017
'In the Xenopus embryo, blastomeres are joined by gap junctions that allow the movement of small molecules between neighboring cells. Previous studies using Lucifer yellow (LY) have reported asymmetries in the patterns of junctional communication suggesting involvement in dorso-ventral patterning. To explore that relationship, we systematically compared the transfer of ... More