Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm
Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm
Invitrogen™

Novex™ Tricine Mini Protein Gels, 10%, 1.0 mm

Los geles de tricina Invitrogen Novex proporcionan separación de proteínas y péptidos de bajo peso molecular. En este sistema, la tricina reemplaza a la glicina en el tampón de desplazamiento, lo que resulta en una concentración y separación más eficientes para proteínas de bajo peso molecular y una mayor resolución de péptidos más pequeños.
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoPocillos
EC6675BOX10 pocillo
EC66752BOX12 pocillo
Número de catálogo EC6675BOX
Precio (CLP)
-
Pocillos:
10 pocillo

Los geles de tricina Invitrogen Novex proporcionan separación de proteínas y péptidos de bajo peso molecular. El sistema de tricina es una modificación del sistema de tampón discontinuo de tris-glicina desarrollado por Schaegger y von Jagow (Schaegger y von Jagow, 1987) específicamente para la resolución de péptidos y proteínas de bajo peso molecular. En este sistema, la tricina reemplaza a la glicina en el tampón de desplazamiento, lo que resulta en una concentración y separación más eficientes para proteínas de bajo peso molecular y una mayor resolución de péptidos más pequeños.

Características de los geles de proteínas de tricina Novex:
• Aumento de la resolución de proteínas con pesos moleculares tan bajos como 2 kDa
• Mejora de la compatibilidad con la secuenciación directa de proteínas después de la transferencia a PVDF
• Reducción de la modificación de proteínas debido al menor pH del sistema de tampón de tricina

Formulación
Los geles de tricina Invitrogen se fabrican con reactivos de alta pureza, los cuales se someten a estrictos controles de calidad: base de Tris, HCI, acrilamida, bisacrilamida, TEMED, SAF y agua altamente purificada. Nuestros geles de tricina tienen un gel concentrador al 4 % y no contienen SDS. El sistema Tricine requiere SDS en tampones de muestra y desplazamiento para obtener los mejores resultados.

Elija el gel de tricina adecuado para su separación de proteínas
Los geles de tricina Invitrogen están disponibles en tres concentraciones de poliacrilamida del 10 %, 16 %, y un gradiente del 10–20 %. Seleccione entre nuestros muchos formatos de pocillo, incluyendo los de 10, 12 y 15 pocillos. Los geles de tricina están formulados para aplicaciones de electroforesis en geles de desnaturalización. Para una preparación óptima de las muestras, recomendamos el tampón de muestra de tricina SDS (LC1676), y para la separación óptima utilice el tampón de desplazamiento de tricina SDS (LC1675).

Para la transferencia de proteínas a una membrana, recomendamos utilizar el tampón de transferencia de Tris-glicina Novex (LC3675) si se realiza una transferencia húmeda tradicional mediante el módulo Blot XCell II (EI9051) o el módulo Mini Blot (B1000). La transferencia semiseca rápida se puede realizar con Invitrogen Power Blotter o la transferencia rápida en seco con el dispositivo de transferencia de gel iBlot 2 (IB21001).

For Research Use Only. Not for use in diagnostic procedures.
Especificaciones
Gel Thickness1,0 mm
Longitud (métrico)8 cm
Modo de separaciónPeso molecular
Línea de productosNovex
Cantidad10 geles/caja
Aplicaciones recomendadasDesnaturalización
Volumen de carga de muestrasHasta 25 µl
Duración de almacenamiento16 semanas
Condiciones de envíoHielo húmedo
Requisitos de almacenamientoAlmacenar entre 2 °C y 8 °C. No la congele.
Anchura (métrico)8 cm
Para utilizar con (equipo)Depósito de minigel, Minicelda XCell SureLock
Porcentaje del gel10 %
Tamaño de gelMini
Tipo de gelTricina
Intervalo de separaciónDe 6 a 200 kDa
Tipo de separaciónDesnaturalización
Pocillos10 pocillo
Unit SizeEach
Contenido y almacenamiento
Una caja contiene 10 geles. Almacenar en el refrigerador (2–8° C). No la congele. La vida útil es de 4–8 semanas dependiendo del tipo de gel.

Preguntas frecuentes

Why do Invitrogen Tricine gels work better for smaller proteins and peptides?

The Tricine gel system, first described by Schagger and von Jagow in 1987, is a modification of the Laemmli Tris-Glycine system to allow for better resolution of smaller proteins and peptides. In the Laemmli system, the proteins are "stacked" in the porous top portion of the gel (stacking gel) between a highly mobile "leading" chloride ion present in the gel buffer and the slower "trailing" glycine ion supplied by the running buffer. These concentrated, thin bands of protein undergo sieving once they reach the resolving gel, which separates them by size.

The resolution of smaller proteins (under 5 kDa) is hindered by the continuous accumulation of free dodecyl-sulfate (DS) ions (from the SDS sample and running buffers) in the stack. This build-up of DS leads to convective mixing of the DS ions with the smaller proteins, causing fuzzy bands and decreased resolution. The mixing of the DS ions with the small proteins will also interfere with the fixing and staining process later. To solve this problem, Schagger and von Jagow replaced the trailing glycine ion with a faster moving Tricine trailing ion. Many small proteins which run with the stacked DS in the Tris Glycine system will separate from DS in the Tricine gel system, resulting in sharper, cleaner bands and better resolution.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What does it mean when bands appear to be getting narrower (or "funneling") as they progress down a protein gel?

There may be too much beta-mercaptoethanol (BME), sample buffer salts, or dithiothreitol (DTT) in your samples. If the proteins are over-reduced, they can be negatively charged and actually repel each other across the lanes causing the bands to get narrower as they progress down the gel.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What causes dumbbell- or barbell-shaped bands during protein electrophoresis?

Barbell-shaped bands are a result of loading too large a sample volume.

When a large sample volume is loaded, part of the sample tends to diffuse to the sides of the wells. When the run begins and the sample moves through the stacking portion of the gel, the sample will stack incompletely, causing a slight retardation of the portion of the sample that diffused to the sides of the wells.

This effect may be intensified in larger proteins, whose migration is more impeded in the low concentration acrylamide of the stacking gel.

To alleviate the problem, concentrate the protein and load a smaller volume. This gives a "thinner" starting zone.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

What can cause "streaking forward" or "frowning" of samples on a SDS-PAGE gel? How can the results be improved?

Some potential causes are:

1) Re-oxidation of protein during run

2) Protein has highly hydrophobic regions where protein can exclude SDS.

Steps you can take to improve results:

1) Reduce samples right before loading, and add antioxidant to running buffer. Do not use samples that have been stored in reducing agent.

2) Load sample with 2X sample buffer instead of 1X.

3) Add SDS to upper chamber buffer: try 0.1, 0.2, 0.3, and 0.4% (don't go any higher than 0.4%)

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

Will NP-40 affect the migration of the samples in the SDS-PAGE gel?

Yes. All detergents and even phospholipids in cell extracts will form mixed micelles with SDS and migrate down into the gel.

They can also interfere with the SDS:protein binding equilibrium. Most of the nonionic detergents significantly interfere with SDS-PAGE.

We recommend that you keep the ratio of SDS to lipid or other detergent at 10:1 (or greater) to minimize these effects.

Find additional tips, troubleshooting help, and resources within our Protein Electrophoresis and Western Blotting Support Center.

Citations & References (5)

Citations & References
Abstract
Immune response to Yersinia outer proteins and other Yersinia pestis antigens after experimental plague infection in mice.
Authors:Benner GE, Andrews GP, Byrne WR, Strachan SD, Sample AK, Heath DG, Friedlander AM,
Journal:Infect Immun
PubMed ID:10085037
'There is limited information concerning the nature and extent of the immune response to the virulence determinants of Yersinia pestis during the course of plague infection. In this study, we evaluated the humoral immune response of mice that survived lethal Y. pestis aerosol challenge after antibiotic treatment. Such a model ... More
Aggregation of the Fc epsilon RI in mast cells induces the synthesis of Fos-interacting protein and increases its DNA binding-activity: the dependence on protein kinase C-beta.
Authors:Lewin I, Jacob-Hirsch J, Zang ZC, Kupershtein V, Szallasi Z, Rivera J, Razin E,
Journal:J Biol Chem
PubMed ID:8576146
The ability of c-Fos to dimerize with various proteins creates transcription complexes which can exert their regulatory function on a variety of genes. One of the transcription factors that binds to c-Fos is the newly discovered Fos-interacting protein (FIP). In this report we present evidence for the regulation of the ... More
Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus
Authors:Sapra R, Verhagen MF, Adams MW
Journal:J Bacteriol
PubMed ID:10852873
Highly washed membrane preparations from cells of the hyperthermophilic archaeon Pyrococcus furiosus contain high hydrogenase activity (9.4 micromol of H(2) evolved/mg at 80 degrees C) using reduced methyl viologen as the electron donor. The enzyme was solubilized with n-dodecyl-beta-D-maltoside and purified by multistep chromatography in the presence of Triton X-100. ... More
Enzyme-substrate intermediate at a specific lysine residue is required for deoxyhypusine synthesis. The role of Lys329 in human deoxyhypusine synthase.
Authors:Joe YA, Wolff EC, Lee YB, Park MH,
Journal:J Biol Chem
PubMed ID:9405486
Deoxyhypusine synthase catalyzes the first step in the post-translational synthesis of hypusine [Nepsilon-(4-amino-2-hydroxybutyl)lysine] in eukaryotic translation initiation factor 5A. We recently reported biochemical evidence for a covalent enzyme-substrate intermediate involving a specific lysine residue (Lys329) in human deoxyhypusine synthase (Wolff, E. C., Folk, J. E., and Park, M. H. (1997) ... More
Anti-tumor antibody BR96 blocks cell migration and binds to a lysosomal membrane glycoprotein on cell surface microspikes and ruffled membranes.
Authors:Garrigues J, Anderson J, Hellström KE, Hellström I,
Journal:J Cell Biol
PubMed ID:7511141
BR 96 is an internalizing antibody that binds to Lewis Y (Le(y)), a carbohydrate determinant expressed at high levels on many human carcinomas (Hellström, I., H. J. Garrigues, U. Garrigues, and K. E. Hellström. 1990. Cancer Res. 50:2183-2190). Breast carcinoma cell lines grown to confluence bind less BR96 than subconfluent ... More