Zero Blunt™ PCR Cloning Kit
Zero Blunt™ PCR Cloning Kit
Invitrogen™

Zero Blunt™ PCR Cloning Kit

El kit Zero Blunt™ PCR Cloning ofrece un método sencillo para la clonación de alta eficacia (> 80 %) deMás información
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoCantidad
K27002020 reacciones
K27004040 reacciones
Número de catálogo K270020
Precio (CLP)
-
Cantidad:
20 reacciones
El kit Zero Blunt™ PCR Cloning ofrece un método sencillo para la clonación de alta eficacia (> 80 %) de productos de reacción en cadena de la polimerasa (PCR) con extremo romo que se amplifica con ADN polimerasas de corrección termoestables. El kit de clonación Zero Blunt™ PCR Cloning usa el vector multifunción de clonación pCR™-Blunt y la ligasa de ADN T4 ExpressLink™ para generar un producto de ligadura en un paso de ligadura de quince minutos a temperatura ambiente.

Características del kit Zero Blunt™ Cloning™ con el vector pCR™-Blunt:
Rápida y práctica: ligadura a temperatura ambiente en 5 minutos
Eficaz: gen ccdB para unos resultados de selección positivos en > 80 % de clones con el inserto adecuado
Flexible: elección de resistencia a kanamicina o Zeocin™ para selección flexible de antibióticos

El vector pCR™-Blunt proporciona:
• Sitios EcoR I que flanquean el sitio de inserción del producto de la PCR para una sencilla escisión de insertos
• Sitio de primer o promotor T7 para la transcripción y secuenciación de ARN in vitro
• Sitios de primer directo e inverso M13 para secuenciación o detección de PCR

Funcionamiento de Zero Blunt™PCR Cloning
El kit Zero Blunt™ PCR Cloning se ha diseñado para clonar fragmentos de PCR con extremo romo (o cualquier fragmento de ADN con extremo romo) con un bajo fondo de no recombinantes. El vector pCR™-Blunt contiene el letal gen E. coliccdB fusionado al extremo C del fragmento LacZα (Bernard et al., 1994). La ligadura de un fragmento de PCR con extremo romo altera la expresión de la fusión del gen lacZα-ccdB, lo que solo permite el crecimiento de recombinantes positivos durante la transformación. Las células que contienen un vector no recombinante mueren durante la siembra en la mezcla de transformación.

Configuraciones del kit
El kit Zero Blunt™ PCR Cloning se ofrece con una serie de configuraciones: con E. coli químicamente competente One Shot™ TOPO10 (K2700-20 y K2700-40) y sin células competentes (K2750-20 y K2750-40) en tamaños de kit de 20 y 40 reacciones.
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Cepa bacteriana o de levaduraTOP10
Método de clonaciónBlunt PCR
Línea de productosZero Blunt
Tipo de productoKit de clonación de PCR
PromotorT7
Cantidad20 reacciones
VectorVectores de clonación de ADN romos
FormatoKit
Unit SizeEach
Contenido y almacenamiento
Los kits de clonación de PCR Zero Blunt™ contienen vector pCR™-Blunt linealizado, ligasa de ADN T4 ExpressLink™, tampón de ligasa de ADN T4 ExpressLink™ 5X, plantilla de control, dNTP, agua estéril y primers directos e inversos M13. Los kits de células competentes contienen E. coli químicamente competente One Shot™, medio SOC y un plásmido de control superhelicoidal.

Almacenar la E. coli One Shot™ a -80 °C. Almacene todos los demás componentes a - 20 °C. Se garantiza la estabilidad de todos los reactivos durante 6 meses si se almacenan correctamente.

Preguntas frecuentes

What is the best molar ratio of PCR product:vector to use for TOPO TA cloning? Is there an equation to calculate the quantity to use?

We suggest starting with a molar ratio of 1:1 (insert:vector), with a range of 0.5:1 to 2:1. The quantity used in a TOPO cloning reaction is typically 5-10 ng of a 2 kb PCR product.

Equation:

length of insert (bp)/length of vector (bp) x ng of vector = ng of insert needed for 1:1 (insert:vector ratio)

What is the best ratio of insert:vector to use for cloning? Is there an equation to calculate this?

The optimal ratio is 1:1 insert to vector. Optimization can be done using a ratio of 0.5-2 molecules of insert for every molecule of the vector.

Equation:

length of insert (bp)/length of vector (bp) x ng of vector = ng of insert needed for 1:1 insert:vector ratio

I'm seeing a lot of vector-only colonies when I try to perform a negative control reaction using vector only (no insert) for a TOPO reaction. Is my TOPO vector re-ligating?

Using the vector only for transformation is not a recommended negative control. The process of TOPO-adaptation is not a 100% process, therefore, there will be “vector only” present in your mix, and colonies will be obtained.

I'm trying to clone in my phosphorylated PCR product into a TOPO vector, and I'm getting no colonies. However, when I clone the same product into a TA vector, everything works perfectly. Why is this?

Phosphorylated products can be TA cloned but not TOPO cloned. This is because the necessary phosphate group is contained within the topoisomerase-DNA intermediate complex of the vector. TOPO vectors have a 3' phosphate to which topoisomerase is covalently bound and a 5' phosphate. Non-TOPO linear vectors (TA and Blunt) have a 3' OH and a 5' phosphate. Phosphorylated products should be phosphatased (CIP) before TOPO cloning.

I'm able to get a lot of colonies, however, none contain my insert of interest. What should I do?

You may be cloning in an artifact. TA and TOPO Cloning are very efficient for small fragments (< 100 bp) present in certain PCR reactions. Gel-purify your PCR product using either a silica-based DNA purification system or electroelution. Be sure that all solutions are free of nucleases (avoid communal ethidium bromide baths, for example.)

Citations & References (18)

Citations & References
Abstract
Utilization of MHC class I transgenic mice for development of minigene DNA vaccinesencoding multiple HLA-restricted CTL epitopes.
Authors:Ishioka GY, Fikes J, Hermanson G, Livingston B, Crimi C, Qin M, del Guercio MF, Oseroff C, Dahlberg C, Alexander J, Chesnut RW, Sette A
Journal:J Immunol
PubMed ID:10201910
'We engineered a multiepitope DNA minigene encoding nine dominant HLA-A2.1- and A11-restricted epitopes from the polymerase, envelope, and core proteins of hepatitis B virus and HIV, together with the PADRE (pan-DR epitope) universal Th cell epitope and an endoplasmic reticulum-translocating signal sequence. Immunization of HLA transgenic mice with this construct ... More
Interactions between protein kinase CK2 and Pin1. Evidence for phosphorylation-dependent interactions.
Authors: Messenger Moira M; Saulnier Ronald B; Gilchrist Andrew D; Diamond Phaedra; Gorbsky Gary J; Litchfield David W;
Journal:J Biol Chem
PubMed ID:11940573
'The peptidyl-prolyl isomerase Pin1 interacts in a phosphorylation-dependent manner with several proteins involved in cell cycle events. In this study, we demonstrate that Pin1 interacts with protein kinase CK2, an enzyme that generally exists in tetrameric complexes composed of two catalytic CK2 alpha and/or CK2 alpha'' subunits together with two ... More
Role of CCAA nucleotide repeats in regulation of hemoglobin and hemoglobin-haptoglobin binding protein genes of haemophilus influenzae.
Authors:Ren Z, Jin H, Whitby PW, Morton DJ, Stull TL
Journal:J Bacteriol
PubMed ID:10482534
'Haemophilus influenzae utilizes hemoglobin and hemoglobin-haptoglobin as heme sources. The H. influenzae hemoglobin- and hemoglobin-haptoglobin binding protein genes, hgpA, hgpB, and hgpC, contain lengths of tetrameric CCAA repeats. Using an hgpA-lacZ translational gene fusion, we demonstrate phase-variable expression of lacZ associated with alteration in the length of the CCAA repeat ... More
Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints.
Authors: Hu F; Wang Y; Liu D; Li Y; Qin J; Elledge S J;
Journal:Cell
PubMed ID:11733064
'During mitosis, a ras-related GTPase (Tem1) binds GTP and activates a signal transduction pathway to allow mitotic exit. During most of the cell cycle, Tem1 function is antagonized by a GTPase-activating protein complex, Bfa1/Bub2. How the Bfa1/Bub2 complex is regulated is not well understood. We find that Polo/Cdc5 kinase acts ... More
Substantially enhanced cloning efficiency of SAGE (Serial Analysis of Gene Expression) byadding a heating step to the original protocol.
Authors:Kenzelmann M, Muhlemann K
Journal:Nucleic Acids Res
PubMed ID:9889294
'The efficiency of the original SAGE (Serial Analysis of Gene Expression) protocol was limited by a small average size of cloned concatemers. We describe a modification of the technique that overcomes this problem. Ligation of ditags yields concatemers of various sizes. Small concatemers may aggregate and migrate with large ones ... More