Qdot™ 525 Streptavidin Conjugate
Qdot™ 525 Streptavidin Conjugate
Invitrogen™

Qdot™ 525 Streptavidin Conjugate

El conjugado de estreptavidina Qdot™ 525 se compone de una proteína de unión de biotina (estreptavidina) unida por enlace covalenteMás información
Have Questions?
Cambiar vistabuttonViewtableView
Número de catálogoCantidad
Q10141MP200 μl
Q10143MP50 μl
Número de catálogo Q10141MP
Precio (CLP)
971.344
Each
Añadir al carro de la compra
Cantidad:
200 μl
Precio (CLP)
971.344
Each
Añadir al carro de la compra
El conjugado de estreptavidina Qdot™ 525 se compone de una proteína de unión de biotina (estreptavidina) unida por enlace covalente a una etiqueta fluorescente (nanocristal Qdot™). La estreptavidina tiene una afinidad muy alta por la biotina, y el conjugado de estreptavidina suele utilizarse junto con el conjugado de biotina para la detección específica de una serie de proteínas, motivos de proteínas, ácidos nucleicos y otras moléculas (p. ej., un anticuerpo primario biotinilado unido a una proteína diana se puede detectar con una estreptavidina marcada con fluorescencia). Este tipo de estrategias se emplean en muchos protocolos de detección, entre los que se encuentran las inmunotransferencias (Western blots), la citometría de flujo, la adquisición de imágenes y la microscopía, los ensayos de microplacas, y también en flujos de trabajo de purificación para lograr el fraccionamiento deseado. Los conjugados de nanocristales Qdot™ se suministran como soluciones de 1 μM.

Características importantes de los conjugados de estreptavidina Qdot™:
El conjugado de estreptavidina Qdot™ 525 tiene un máximo de emisión de ∼525 nm aprox.
Cada nanocristal Qdot™ contiene aproximadamente de 5 a 10 estreptavidinas
Fluorescencia muy fotoestable e intensa
Se excitan de forma eficaz con fuentes de excitación de una sola línea
Emisión estrecha, gran corrimiento de Stokes
Disponibles en varios colores
Ideal para inmunotransferencias (Western blot), citometría de flujo, adquisición de imágenes y microscopía, ensayos en microplacas y mucho más

Propiedades de los nanocristales Qdot™
El conjugado de estreptavidina Qdot™ tiene el tamaño de una macromolécula o proteína grande (∼15–20 nm aprox.) y representa la clase más brillante de reactivos de detección de estreptavidina. Los conjugados de estreptadivina Qdot™ están hechos de un cristal de tamaño nanométrico de un material semiconductor (CdSe) recubierto con una cáscara semiconductora adicional (ZnS) para mejorar las propiedades ópticas del material. Los conjugados de estreptavidina Qdot™ 705 y Qdot™ 800, que incluyen CdSeTe, están hechos de forma similar. A su vez, el material del «núcleo-cáscara» está recubierto con una capa de polímeros que permite que los materiales se conjuguen con moléculas biológicas y conserven sus propiedades ópticas.

Otros conjugados fluorescentes de estreptavidina disponibles
Puede elegir entre diversos colores Qdot™ o probar el kit de muestreo de estreptavidina Qdot™, que contiene conjugados de estreptavidina Qdot™ en seis colores (525, 565, 585, 605, 655 y 705). Además de conjugados de nanocristales, ofrecemos una amplia gama de estreptavidinas conjugadas con colorantes Alexa Fluor™, colorante Oregon Green™, conjugados de enzimas y fluoróforos tradicionales como el colorante Texas Red™ o la fluoresceína (FITC), entre otros.

Busque conjugados biotinilados
También ofrecemos una amplia gama de conjugados biotinilados para utilizar con los sistemas de detección de biotina-estreptavidina.
• Utilice la herramienta de búsqueda de anticuerpos primarios para encontrar anticuerpos primarios biotinilados
• Utilice la herramienta de selección de anticuerpos secundarios para encontrar anticuerpos secundarios biotinilados y anticuerpos antihaptenos y anticolorantes biotinilados

Bloqueo de la biotina endógena
Las biotinas naturales pueden interferir con los sistemas de detección de biotina-estreptavidina. Para los experimentos con células fijadas y permeabilizadas, pruebe nuestro kit de bloqueo de biotina endógena para minimizar esta interferencia.

Para uso exclusivo en investigación. No diseñado para uso terapéutico o de diagnóstico en animales o humanos.

Enlaces relacionados:

Más información sobre la detección de avidina-biotina

Más información sobre los nanocristales Qdot™

Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.

Especificaciones
Concentración1 μM
Tipo de productoConjugado de estreptavidina (fluorescente)
Cantidad200 μl
Condiciones de envíoTemperatura ambiente
ConjugadoQdot 525
FormularioLíquido
Línea de productosQdot
Unit SizeEach
Contenido y almacenamiento
Almacenar en el refrigerador (2–8° C).

Preguntas frecuentes

I am getting very high background with my Qdot streptavidin conjugate. Do you have any suggestions?

Here are some suggestions: Use the Qdot Incubation Buffer (Cat. No. Q20001MP). The included buffer is formulated specifically for improved signal-to-background ratios in most immunolabeling applications using the Qdot streptavidin conjugates. Alternate buffers may result in more variable staining and, in particular, may increase background staining. However, some specific applications may require other buffer conditions. Please see the protocol "Double-labeling Using Qdot Streptavidin conjugates."
Determine if the sample has a high level of endogenous biotin. Block the sample using an avidin-biotin pre-blocking step.
If you have used the Qdot Incubation Buffer and still get high nonspecific background, then it may be necessary to check other steps of your procedure. Blocking the sample with BSA or normal animal serum will generally decrease nonspecific binding of both antibodies and Qdot streptavidin conjugates. It is a good practice to dilute your primary and secondary antibodies in the blocking buffer. Some tissues such as spleen and kidney sections may contain endogenous biotin, which may contribute to non-specific signal. Endogenous biotin can be blocked with an avidin/biotin blocking kit (Cat. No. E21390).
Grainy staining or clumps of fluorescent material appear in the background.
Occasionally the BSA within the Qdot Incubation Buffer shows slight aggregation over time. It is necessary to remove this aggregate prior to labeling the sample with the Qdot streptavidin conjugate. Spin down the incubation mixture before addition to the sample. This can be accomplished by spinning the samples in a benchtop centrifuge (Eppendorf 5415) at 5,000 x g for 2 minutes. The material can also be passed over a 0.2 µm spin filter unit before you add it to the sample for staining to remove microscopic precipitates. If you are using a buffer that is different than the Qdot Incubation Buffer, this behavior can often be attributed to higher levels of NaCl or other salts in the incubation buffer, and may not be easily fixed with filtration. In this case, reduce the overall salt concentration.
Optimize concentration of biotinylated secondary antibodies.
Optimizing specific signal can often be achieved by adjusting the level of biotinylated antibody used instaining. High levels of biotinylated antibody are necessary to obtain specific labeling, but overly high levels will contribute to nonspecific binding of the antibody to the sample. Nonspecifically bound biotinylated antibody will bind to the Qdot streptavidin conjugate, resulting in higher staining of the background.
Optimize concentration of Qdot streptavidin conjugate.
Just as titration of primary and secondary antibodies is necessary to achieve optimal specific signal in immunolabeling applications, the level of the final probe should be optimized for each conjugate. In general, concentrations at or slightly below saturation should have the optimal signal-to-background ratio, while concentrations substantially higher than saturation will compromise the assay with higher background levels.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I am getting no signal with my Qdot streptavidin conjugate. What should I do?

Here are some suggestions:

Confirm imaging/detection setup suitability.
Make sure that you are using an appropriate filter set to detect the signal. Please consult Table 1 in the Qdot Biotin User Manual for a list of appropriate and optimal filters.
Check to see that Qdot conjugate is fluorescing using an alternative light source.
Qdot conjugates will normally fluoresce brightly under a hand-held ultraviolet lamp (long wave, such as the type used to visualize ethidium bromide on agarose gels). Although we have not seen pronounced loss of fluorescence of these materials under any storage conditions that we have investigated, we have not been able to examine all storage conditions. If the Qdot product does not appear to fluoresce under the long wave UV excitation, please contact Technical Support at techsupport@qdots.com. For a microscope, perform a spot test: place a small droplet (2 to 5 µL) of the quantum dot solution onto a clean slide (no coverslip) and examine under the appropriate filter set at low magnification.
Confirm the specificity and titer of primary antibody.
Make sure the antibody will recognize the intended targets. Make sure there is sufficient primary antibody bound to the targets. This verification can be performed by ELISA-based capture of the antigen of interest, or by other techniques that can be found in lab manuals such as the Current Protocols in Immunology.
For Qdot streptavidin conjugates, confirm biotinylation of antibody.
Make sure your antibodies are effectively biotinylated. It may be necessary to independently adjust the concentration of both the primary and secondary antibodies used in the assay to obtain optimal signal and minimal background.
PAP pen ink may quench signal.
Use an alternate method for isolating target areas on the slide. If your protocol requires the use of a PAP pen, we recommend the ImmEdge Hydrophobic Barrier Pen (Cat. No. H-4000) from Vector Labs.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What is the best way to remove white precipitate from my ITK Qdot nanocrystals?

Spinning your ITK Qdot nanocrystals at approximately 3,000 rpm for 3-5 minutes should remove the white precipitate from the supernatant. Use the supernatant immediately.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I see a white precipitate in my ITK Qdot nanocrystals; should I be concerned?

The precipitate in the organic ITK Qdot nanocrystals occurs with some frequency. The ITK Qdot nanocrystals sometimes include impurities that show as a white precipitate.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Why do my Qdot nanocrystals appear to be blinking?

Blinking is an inherent property of quantum dots; in fact, all single-luminescent molecules blink, including organic dyes. The brightness and photostability of Qdot nanocrystals makes the blinking more visibly apparent. Under higher energy excitation, Qdot nanocrystals blink even faster.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (24)

Citations & References
Abstract
Quantum dot-mediated biosensing assays for specific nucleic acid detection.
Authors:Yeh HC, Ho YP, Wang TH,
Journal:Nanomedicine
PubMed ID:17292066
'Two new classes of quantum dot (QD)-mediated biosensing methods have been developed to detect specific DNA sequences in a separation-free format. Both methods use 2 target-specific oligonucleotide probes to recognize a specific target. The first method is based on cross-linking of 2 QDs with distinct emission wavelengths caused by probe-target ... More
Homogenous rapid detection of nucleic acids using two-color quantum dots.
Authors:Zhang CY, Johnson LW
Journal:Analyst
PubMed ID:16568163
'We report a homogenous method for rapid and sensitive detection of nucleic acids using two-color quantum dots (QDs) based on single-molecule coincidence detection. The streptavidin-coated quantum dots functioned as both a nano-scaffold and as a fluorescence pair for coincidence detection. Two biotinylated oligonucleotide probes were used to recognize and detect ... More
Induction of apoptosis by antisense CK2 in human prostate cancer xenograft model.
Authors:Slaton JW, Unger GM, Sloper DT, Davis AT, Ahmed K
Journal:Mol Cancer Res
PubMed ID:15634760
'Protein serine/threonine kinase CK2 (formerly casein kinase 2) is a ubiquitous protein kinase that plays key roles in cell growth, proliferation, and survival. We have shown previously that its molecular down-regulation induces apoptosis in cancer cells in culture. Here, we have employed a xenograft model of prostate cancer to extend ... More
Nanoparticles as fluorescence labels: is size all that matters?
Authors:Swift JL, Cramb DT,
Journal:Biophys J
PubMed ID:18390610
'Fluorescent labels are often used in bioassays as a means to detect and characterize ligand-receptor binding. This is due in part to the inherently high sensitivity of fluorescence-based technology and the relative accessibility of the technique. There is often little concern raised as to whether or not the fluorescent label ... More
Targeted cellular delivery of quantum dots loaded on and in biotinylated liposomes.
Authors:Sigot V, Arndt-Jovin DJ, Jovin TM,
Journal:Bioconjug Chem
PubMed ID:20715851
'We describe the preparation, biophysical characterization, and receptor-mediated cellular internalization of biotinylated lipid particles (BLPs) loaded on the surface and internally with two distinct (colors) of quantum dot (QD) probes. BLPs were formulated with 1.4 and 2.7 mol % PEG-lipids containing either a fusogenic or pH-sensitive lipid to promote bilayer ... More