BLOCK-iT™ Lentiviral RNAi Zeo Gateway™ Vector Kit
Product Image
Invitrogen™

BLOCK-iT™ Lentiviral RNAi Zeo Gateway™ Vector Kit

El kit de vectores Gateway™ Zeo de ARNi lentiviral BLOCK-iT™ contiene el vector de expresión pLenti4/BLOCK-iT™-DEST que permite la administraciónMás información
Have Questions?
Número de catálogoCantidad
V48820
también denominado V488-20
20 reacciones
Número de catálogo V48820
también denominado V488-20
Precio (CLP)
-
Cantidad:
20 reacciones
El kit de vectores Gateway™ Zeo de ARNi lentiviral BLOCK-iT™ contiene el vector de expresión pLenti4/BLOCK-iT™-DEST que permite la administración lentiviral y la integración genómica de la codificación de ADN para ARNhc. Una vez expresado, el ARNhc es procesado por la maquinaria celular e inicia el ARNi objetivo específico. El vector pLenti4/BLOCK-iT™-DEST ofrece:

Tecnología Gateway™ para la recombinación eficiente del casete de ARNi desde el vector pENTR™/H1/TO inducible BLOCK-iT™

• Todos los componentes necesarios para el envasado, la administración y la integración lentiviral eficaz del ARNhc
• Marcador de selección Zeocin™ para la selección rápida de líneas celulares clonales que contienen el casete de ARNi
Para uso exclusivo en investigación. No apto para uso en procedimientos diagnósticos.
Especificaciones
Método de clonaciónGateway™
Sistema constitutivo o inducibleInducible
Tipo de entregaLentivírico
Línea de productosBLOCK-iT, Gateway
Tipo de productoKit de vectores de expresión de ARNi
Cantidad20 reacciones
Tipo de RNAiARNhc
Agente de selección (eucariótico)Zeocin™
VectorpLenti
FormatoKit
PromotorH1/TO
Unit Size20 reactions
Contenido y almacenamiento
El kit de vectores Gateway™ Zeo de ARNi lentiviral BLOCK-iT™ contiene el vector pLenti4/BLOCK-iT™-DEST, el vector de control de ARNhc pLenti4-GW/H1/TO-lamina y E.Coli químicamente competente One Shot™ Stbl3™. Guarde el pLenti4/BLOCK-iT™-DEST, el vector pLenti6/TR, la blasticidina, la mezcla de envasado lentiviral ViraPower™ y el vector de control a -20°C. Guarde las células competentes One Shot Stbl3™, la célula 293FT y la mezcla enzimática LR Clonase™ a -80°C. Guarde Lipofectamine™ 2000 y +4°C. Se garantiza la estabilidad de todos los reactivos durante 6 meses si se almacenan correctamente.

Preguntas frecuentes

Can I use any Gateway entry vector to generate entry clones for use in RNAi applications?

No, you should use an entry vector that contains the elements necessary for RNA Polymerase III-dependent expression of your shRNA (i.e., Pol III promoter and terminator).

What is a dose response curve or kill curve? And can you outline the steps involved?

A dose response curve or kill curve is a simple method for determining the optimal antibiotic concentration to use when establishing a stable cell line. Untransfected cells are grown in a medium containing antibiotic at varying concentrations in order to determine the lowest amount of antibiotic needed to achieve complete cell death. The basic steps for performing a dose response curve or kill curve are as follows:

- Plate untransfected cells at 25% confluence, and grow them in a medium containing increasing concentrations of the antibiotic. For some antibiotics, you will need to calculate the amount of active drug to control for lot variation.
- Replenish the selective medium every 3-4 days. After 10-12 days, examine the dishes for viable cells. The cells may divide once or twice in the selective medium before cell death begins to occur.
- Look for the minimum concentration of antibiotic that resulted in complete cell death. This is the optimal antibiotic concentration to use for stable selection.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

Can I create stable cell lines using pENTR/U6 entry vector or the pENTR/H1/TO vector?

Unfortunately, the pENTR/U6 vector does not contain a selection marker; therefore, only transient RNAi analysis may be performed. If you wish to generate stable cell lines, perform an LR reaction into an appropriate Gateway destination vector to generate expression clones.
The pENTR/H1/TO vector contains the Zeocin resistance gene to facilitate generation of cell lines that inducbily express the shRNA of interest. Perform a kill curve to determine the minimum concentration of Zeocin that is required to kill your untransfected mammalian cell line. Please note that Zeocin-sensitive cells do not round up and detach from the plate, but rather may increase in size, show abnormal cell shape, display presence of large empty vesicles in the cytoplasm, or show breakdown of plasma/nuclear membranes.

Find additional tips, troubleshooting help, and resources within our RNAi Support Center.

What loop sequence should I use when designing my shRNA for cloning? Do you have any guidelines I should follow?

You can use a loop sequence of any length ranging from 4 to 11 nucleotides, although short loops (i.e., 4-7 nucleotides) are generally preferred. Avoid using a loop sequence containing thymidines (Ts), as they may cause early termination. This is particularly true if the target sequence itself ends in one or more T nucleotides. Here are some loop sequences we recommend:

- 5' - CGAA - 3'
- 5' - AACG - 3'
- 5' - GAGA - 3'

What considerations regarding transcription initiation should I take when designing my shRNA for cloning?

Transcription of the shRNA initiates at the first base following the end of the U6 promoter sequence. In the top-strand oligo, the transcription initiation site corresponds to the first nucleotide following the 4 bp CACC sequence added to permit directional cloning. We recommend initiating the shRNA sequence at a guanosine (G) because transcription of the native U6 snRNA initiates at a G. Note the following:

- If G is part of the target sequence, then incorporate the G into the stem sequence in the top-strand oligo and add a complementary C to the 3' end of the top-strand oligo.
- If G is not the first base of the target sequence, we recommend adding a G to the 5' end of the top-strand oligo directly following the CACC overhang sequence. In this case, do not add the complementary C to the 3' end of the top-strand oligo. Note: We have found that adding the complementary C in this situation can result in reduced activity of the shRNA. Alternative, if use of a G to initiate transcription is not desired, use an adenosine (A) rather than C or T. Note, however, that use of any nucleotide other than G may affect initiation efficiency and position.