RPMI 1640 Medium, HEPES
RPMI 1640 Medium, HEPES
Gibco™

RPMI 1640 Medium, HEPES

RPMI 1640 Medium was originally developed to culture human leukemic cells in suspension and as a monolayer. Roswell Park MemorialRead more
Have Questions?
Change viewbuttonViewtableView
Catalog NumberQuantity
22400089500 mL
22400097100 mL
Catalog number 22400089
Price (EUR)
45,68
Each
Add to cart
Quantity:
500 mL
Customize this product
Price (EUR)
45,68
Each
Add to cart

RPMI 1640 Medium was originally developed to culture human leukemic cells in suspension and as a monolayer. Roswell Park Memorial Institute (RPMI) 1640 Medium has since been found suitable for a variety of mammalian cells, including HeLa, Jurkat, MCF-7, PC12, PBMC, astrocytes, and carcinomas. We offer a variety of RPMI 1640 Medium modifications for a range of cell culture applications. Find the right formulation using the media selector tool.

This RPMI is modified as follows:

With: L-glutamine, HEPES, Phenol Red

The complete formulation is available.

Using RPMI

RPMI 1640 Medium is unique from other media because it contains the reducing agent glutathione and high concentrations of vitamins. RPMI 1640 Medium contains biotin, vitamin B12, and PABA, which are not found in Eagle's Minimal Essential Medium or Dulbecco's Modified Eagle Medium. In addition, the vitamins inositol and choline are present in very high concentrations. RPMI 1640 Medium contains no proteins, lipids, or growth factors. Therefore, RPMI 1640 Medium requires supplementation, commonly with 10% Fetal Bovine Serum (FBS). RPMI 1640 Medium uses a sodium bicarbonate buffer system (2.0 g/L), and therefore requires a 5–10% CO2 environment to maintain physiological pH.

For Research Use or Further Manufacturing. Not for diagnostic use or direct administration into humans or animals.
Specifications
Cell LineHeLa, Jurkat, MCF-7, PC-12, PBMC, astrocytes, and carcinomas
Cell TypeLeukemic Cells
Concentration1 X
Manufacturing QualitycGMP-compliant under the ISO 13485 standard
Product LineGibco
Product TypeRPMI 1640 Medium (Roswell Park Memorial Institute 1640 Medium)
Quantity500 mL
Shelf Life12 Months From Date of Manufacture
Shipping ConditionRoom Temperature
ClassificationAnimal Origin-free
FormLiquid
Serum LevelStandard Serum Supplementation
SterilitySterile-filtered
Sterilization MethodSterile-filtered
With AdditivesGlutamine, HEPES, Phenol Red
Without AdditivesNo Sodium Pyruvate
Unit SizeEach
Contents & Storage
Storage conditions: 2-8° C. Protect from light
Shipping conditions: Ambient
Shelf life: 12 months from date of manufacture

Frequently asked questions (FAQs)

How light sensitive is RPMI 1640 media? Should I also be protecting it from LED light?

While we know that different wavelengths of light are worse than others for exposure, we would recommend as a best practice to protect the medium from all forms of light exposure including LEDs, as much as possible to ensure optimal performance, as several components within the medium are light sensitive, such as vitamins.

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

What is the density (g/L) for RPMI 1640 Medium?

We have specific gravity information for RPMI 1640 Medium: 1.006 kg/L. In this case, the specific gravity is the same as density as the solvent is water.

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

What is the shelf life of the DMEM, high glucose, pyruvate medium once the bottle is opened and the medium is supplemented?

We do not provide stability data for the product once it is opened as it would depend on the usage and storage conditions.

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

Is it necessary to store DMEM, high glucose, pyruvate medium in the dark?

Yes, the medium should be stored in the dark because there are some components in the medium such as HEPES, Tryptophan, and Riboflavin, etc. that are sensitive to light.

Find additional tips, troubleshooting help, and resources within our Cell Culture Support Center.

How long can I keep my media after supplementing with serum?

Generally speaking, media can be used for up to three weeks after supplementation with serum. There are no formal studies to support this, but it is the rule of thumb used by our scientists.

Find additional tips, troubleshooting help, and resources within our Mammalian Cell Culture Basics Support Center.

Citations & References (7)

Citations & References
Abstract
A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function.
Authors: Ruvolo Peter P; Clark Warren; Mumby Marc; Gao Fengqin; May W Stratford;
Journal:J Biol Chem
PubMed ID:11929874
'Recently it has been shown that the potent apoptotic agent ceramide activates a mitochondrial protein phosphatase 2A (PP2A) and promotes dephosphorylation of the anti-apoptotic molecule Bcl2 (Ruvolo, P. P., Deng, X., Ito, T., Carr, B. K., and May, W. S. (1999) J. Biol. Chem. 274, 20296-20300). In cells expressing Bcl2, ... More
Cell-penetrating Peptide enhanced intracellular Raman imaging and photodynamic therapy.
Authors:Fales AM, Yuan H, Vo-Dinh T
Journal:
PubMed ID:23659475
'We present the application of a theranostic system combining Raman imaging and the photodynamic therapy (PDT) effect. The theranostic nanoplatform was created by loading the photosensitizer, protoporphyrin IX, onto a Raman-labeled gold nanostar. A cell-penetrating peptide, TAT, enhanced intracellular accumulation of the nanoparticles in order to improve their delivery and ... More
Slow-cycling therapy-resistant cancer cells.
Authors:Moore N, Houghton J, Lyle S
Journal:Stem Cells Dev
PubMed ID:21973238
Tumor recurrence after chemotherapy is a major cause of patient morbidity and mortality. Recurrences are thought to be secondary to small subsets of cancer cells that are better able to survive traditional forms of chemotherapy and thus drive tumor regrowth. The ability to isolate and better characterize these therapy-resistant cells ... More
Krüppel-like zinc fingers bind to nuclear import proteins and are required for efficient nuclear localization of erythroid Krüppel-like factor.
Authors: Quadrini Karen J; Bieker James J;
Journal:J Biol Chem
PubMed ID:12072445
Erythroid Krüppel-like Factor (EKLF/KLF-1) is an erythroid-specific transcription factor that contains three C(2)H(2) zinc fingers and is required for correct chromatin structure and expression of the beta-globin locus. However, regions within the EKLF protein that serve as signals for its nuclear localization and the proteins that may enable it to ... More
Natural truncation of the chemokine MIP-1 beta /CCL4 affects receptor specificity but not anti-HIV-1 activity.
Authors: Guan Ennan; Wang Jinhai; Roderiquez Gregory; Norcross Michael A;
Journal:J Biol Chem
PubMed ID:12070155
Activated lymphocytes synthesize and secrete substantial amounts of the beta-chemokines macrophage inflammatory protein (MIP)-1 alpha/CCL3 and MIP-1 beta/CCL4, both of which inhibit infection of cells with human immunodeficiency virus type 1 (HIV-1). The native form of MIP-1 beta secreted by activated human peripheral blood lymphocytes (MIP-1 beta(3-69)) lacks the two ... More