CellLight™ Early Endosomes-RFP, BacMam 2.0
CellLight™ Early Endosomes-RFP, BacMam 2.0
Invitrogen™

CellLight™ Early Endosomes-RFP, BacMam 2.0

CellLight Early Endosomes-RFP, BacMam 2.0, provides an easy way to label early endosomes with red fluorescent protein (RFP) in liveRead more
Have Questions?
Catalog NumberQuantity
C105871 mL
Catalog number C10587
Price (EUR)
670,00
Each
Add to cart
Quantity:
1 mL
Price (EUR)
670,00
Each
Add to cart
CellLight Early Endosomes-RFP, BacMam 2.0, provides an easy way to label early endosomes with red fluorescent protein (RFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses RFP fused to Rab5a. You can observe early endosomes-RFP behavior in live cells independently of organelle pH and label with multiple tracking or tracing dyes to image dynamic cellular processes.

Cells expressing CellLight constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight Technology is:
Fast and convenient: simply add CellLight reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight Early Endosomes-RFP, BacMam 2.0, is a fusion construct of Rab5a and TagRFP, providing accurate and specific targeting to cellular Early Endosomes-RFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

Visualize staining your cell without wasting your reagents, antibodies, or time with our new Stain-iT Cell Staining Simulator.

For Research Use Only. Not for use in diagnostic procedures.
Specifications
ColorRed-Orange, Orange
Detection MethodFluorescence
Dye TypeRFP (TagRFP)
EmissionVisible
Excitation Wavelength Range555⁄584
For Use With (Equipment)Confocal Microscope, Fluorescence Microscope
FormLiquid
Product LineCellLight
Quantity1 mL
Shipping ConditionWet Ice
TechniqueFluorescence Intensity
Label TypeFluorescent Dye
Product TypeEndosomes Label
SubCellular LocalizationEndosomes
Unit SizeEach
Contents & Storage
Store at 2°C to 6°C, protected from light. Do Not Freeze.

Frequently asked questions (FAQs)

How can I increase the transduction efficiency with the BacMam 2.0 reagents such as the the CellLight and Premo products?

Try varying particle-to-cell ratio (PPC), incubation volume, temperature and, cell density (if adherent cells are transduced). For adherent cells, we recommend a confluence of about 70%. Following the PPC, adjusting the volume is the next best parameter to change to optimize protein expression. If that doesn't work, you can also use the BacMam Enhancer Kit (Cat. No. B10107).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Is there any way to preserve the CellLights labeling beyond 5 days?

Cells transduced with the CellLights reagents can be stored frozen for several months after transduction, without loss of expression.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Are the CellLights products toxic to cells?

If the viral particles are used at the level we recommend, they are very well tolerated by cells.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

For how long will the CellLights products label my cells?

The BacMam 2.0 CellLights typically express for 5 days after transduction.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What cell types can the CellLights products be used with?

The first generation BacMam reagents were shown to efficiently transduce over 90 cell types, including stable cell lines and primary cells. With BacMam 2.0, it is now possible to also efficiently transduce primary neurons and stem cells.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (30)

Citations & References
Abstract
Targeted Polymersome Delivery of siRNA Induces Cell Death of Breast Cancer Cells Dependent upon Orai3 Protein Expression.
Authors:Pangburn TO, Georgiou K, Bates FS, Kokkoli E,
Journal:Langmuir
PubMed ID:22827285
Polymersomes, polymeric vesicles that self-assemble in aqueous solutions from block copolymers, have been avidly investigated in recent years as potential drug delivery agents. Past work has highlighted peptide-functionalized polymersomes as a highly promising targeted delivery system. However, few reports have investigated the ability of polymersomes to operate as gene delivery ... More
Identification and Characterization of Receptor-Specific Peptides for siRNA Delivery.
Authors:Ren Y, Hauert S, Lo JH, Bhatia SN,
Journal:ACS Nano
PubMed ID:22909216
Tumor-targeted delivery of siRNA remains a major barrier in fully realizing the therapeutic potential of RNA interference. While cell-penetrating peptides (CPP) are promising siRNA carrier candidates, they are universal internalizers that lack cell-type specificity. Herein, we design and screen a library of tandem tumor-targeting and cell-penetrating peptides that condense siRNA ... More
Cell-permeable gomesin peptide promotes cell death by intracellular Ca(2+) overload.
Authors:Paredes-Gamero EJ, Casaes-Rodrigues RL, Moura GE, Domingues TM, Buri MV, Ferreira VH, Trindade ES, Moreno-Ortega AJ, Cano-Abad MF, Nader HB, Ferreira AT, Miranda A, Justo GZ, Tersariol IL,
Journal:Mol Pharm
PubMed ID:22873645
In recent years, the antitumoral activity of antimicrobial peptides (AMPs) has been the goal of many research studies. Among AMPs, gomesin (Gm) displays antitumor activity by unknown mechanisms. Herein, we studied the cytotoxicity of Gm in the Chinese hamster ovary (CHO) cell line. Furthermore, we investigated the temporal ordering of ... More
A Rab11a-enriched subapical membrane compartment regulates a cytoskeleton-dependent transcytotic pathway in secretory epithelial cells of the lacrimal gland.
Authors:Xu S, Edman M, Kothawala MS, Sun G, Chiang L, Mircheff A, Zhu L, Okamoto C, Hamm-Alvarez S,
Journal:J Cell Sci
PubMed ID:21984810
'Despite observations that the lacrimal gland has been identified as the principal source of dimeric immunoglobulin A (dIgA) in tears, the mechanism used by lacrimal gland acinar cells (LGACs) to transcytose dIgA produced by interstitial plasma cells is not well-characterized. This study identifies a transcytotic pathway in LGACs regulated by ... More
Deletion of lipoprotein PG0717 in Porphyromonas gingivalis W83 reduces gingipain activity and alters trafficking in and response by host cells.
Authors:Reyes L, Eiler-McManis E, Rodrigues PH, Chadda AS, Wallet SM, Bélanger M, Barrett AG, Alvarez S, Akin D, Dunn WA, Progulske-Fox A,
Journal:
PubMed ID:24069284
'P. gingivalis (Pg), a causative agent of chronic generalized periodontitis, has been implicated in promoting cardiovascular disease. Expression of lipoprotein gene PG0717 of Pg strain W83 was found to be transiently upregulated during invasion of human coronary artery endothelial cells (HCAEC), suggesting this protein may be involved in virulence. We ... More