Alexa Fluor™ 568 Hydrazide
Alexa Fluor™ 568 Hydrazide
Invitrogen™

Alexa Fluor™ 568 Hydrazide

Alexa Fluor™ 568 Hydrazide is useful as a cell tracer and as a reactive dye for labeling aldehydes or ketonesRead more
Have Questions?
Catalog NumberQuantity
A104371 mg
Catalog number A10437
Price (EUR)
558,00
Each
Add to cart
Quantity:
1 mg
Price (EUR)
558,00
Each
Add to cart
Alexa Fluor™ 568 Hydrazide is useful as a cell tracer and as a reactive dye for labeling aldehydes or ketones in polysaccharides or glycoproteins. Alexa Fluor™ 568 is a bright, red fluorescent dye. Used for stable signal generation in imaging and flow cytometry, Alexa Fluor™ 568 dye is water soluble and pH-insensitive from pH 4 to pH 10. In addition to reactive dye formulations, we offer Alexa Fluor™ 568 dye conjugated to a variety of antibodies, peptides, proteins, tracers, and amplification substrates optimized for cellular labeling and detection (learn more).

Detailed information about this AlexaFluor™ hydrazide:

• Fluorophore label : Alexa Fluor™ 568 dye
• Reactive group: hydrazide
• Reactivity: Aldehydes or keytones in polysaccharides or glycoproteins
• Ex/Em of the conjugate: 576/599 nm
• Extinction coefficient: 86,000 cm-1M-1
• Spectrally similar dyes: Rhodamine Red
• Molecular weight: 730.74

Cell Tracking and Tracing Applications
Alexa Fluor™ hydrazides and hydroxlamines are useful as low molecular weight, membrane-impermeant, aldehyde-fixable cell tracers, exhibiting brighter fluorescence and greater photostability than cell tracers derived from other spectrally similar fluorophores. They are easily loaded into cells by microinjection, infusion from patch pipette, or uptake induced by our Influx™ Pinocytic Cell-Loading Reagent. Learn more about cell tracking and tracing.

Glycoprotein and Polysaccharide Labeling Applications
The Alexa Fluor™ hydrazides and hydroxlamines are reactive molecules that can be used to add a fluorescent label to biomolecules containing aldehydes or ketones. Aldehydes and ketones can be introduced into polysaccharides and glycoproteins by periodate-mediated oxidation of vicinal diols. Galactose oxidase can also be used to oxidize terminal galactose residues of glycoproteins to aldehydes.

Hydrazide vs Hydroxylamine
Hydrazine derivatives react with ketones and aldehydes to yield relatively stable hydrazones. Hydroxylamine derivatives (aminooxy compounds) react with aldehydes and ketones to yield oximes. Oximes are superior to hydrazones with respect to hydrolytic stability. Both hydrazones and oximes can be reduced with sodium borohydride (NaBH4) to further increase the stability of the linkage.

Learn More About Protein and Antibody Labeling
We offer a wide selection of Molecular Probes™ antibody and protein labeling kits to fit your starting material and your experimental setup. See our Antibody Labeling kits or use our Labeling Chemistry Selection Tool for other choices. To learn more about our labeling kits, read Kits for Labeling Proteins and Nucleic Acids—Section 1.2 in The Molecular Probes™ Handbook.

We’ll Make a Custom Conjugate for You
If you can’t find what you’re looking for in our online catalog, we’ll prepare a custom antibody or protein conjugate for you. Our custom conjugation service is efficient and confidential, and we stand by the quality of our work. We are ISO 13485:2000 certified.

Related Products
DMSO (dimethylsulfoxide) (D12345)
Antibody Conjugate Purification Kit for 0.5-1 mg (A33086)
Antibody Conjugate Purification Kit for 20-50 μg (A33087)
Antibody Conjugate Purification kit for 50-100 μg (A33088)
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Chemical ReactivityCarboxylic Acid, Ketone, Aldehyde
Emission599 nm
Excitation576 nm
Label or DyeAlexa Fluor™ 568
Product TypeHydrazide
Quantity1 mg
Reactive MoietyAmine, Hydrazide
Shipping ConditionRoom Temperature
Label TypeAlexa Fluor
Product LineAlexa Fluor
Unit SizeEach
Contents & Storage
Store at room temperature and protect from light.

Frequently asked questions (FAQs)

What dye can I use that is non-reactive and can show an injection site?

The non-reactive Alexa Fluor and Alexa Fluor hydrazide derivatives may be used for injection site visualization. Other options include the fluorescent polystyrene microspheres, FluoSpheres, and dye-conjugated dextrans. The hydrazide derivatives and 'fixable' dextrans are retained by cross-linking using an aldehyde-based fixative.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I injected a fluorescent tracer, but cannot detect it after tissue is fixed and sectioned. What am I doing wrong?

Confirm that the tracer you are using crosslinks to proteins or has a primary amine for fixation-either a hydrazide, lysine fixable dextran, or a protein conjugate.
Use aldehyde-based fixatives to cross link the amines on the tracer.
Inject a larger amount or higher concentration of the tracer. Tracers are generally injected at 1-20% concentrations (10 mg/mL or higher).
Confirm that you are using the correct fluorescent filter for detection. You can perform a spot test by pipetting a small amount of the undiluted stock solution of the tracer onto a slide, then view under the filter you are using on your microscope. This will confirm if the tracer fluorescence can be detected and the fluorescent microscope filter is working properly.
Review tissue fixation and handling procedures to confirm if any reagents or processing procedures could be affecting the tracer.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I have labeled my neurons with an Alexa Fluor conjugated biocytin to look at transport but I wanted to examine only retrograde transport and biocytin appears to be moving retrograde and anterograde. What should I do?

Observing both types of transport is typical for biocytin. The conjugated cholera toxin subunit B products have been observed to travel only retrogradely.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Do you have a neuronal tracer similar to Lucifer Yellow but in another fluorescent color?

Lucifer Yellow CH is a hydrazide, so any of our Alexa Fluor or fluorescent hydrazides could potentially be used. A listing of them can be found here. (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing/hydrazides-biocytins.html#prd)

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

How do I know which tracer to choose for my experiment?

Factors to consider are size of tracer, method of delivery (injection, direct application to tissue, etc.), and if the tracer needs to be fixable. Here are some links to details about the various classes of neuronal tracers we offer and how to choose between them:

Neuronal Tracing (https://www.thermofisher.com/us/en/home/life-science/cell-analysis/cell-tracing-tracking-and-morphology/neuronal-tracing.html)
Choosing a Tracer (https://www.thermofisher.com/us/en/home/references/molecular-probes-the-handbook/fluorescent-tracers-of-cell-morphology-and-fluid-flow/choosing-a-tracer.html)
Imaging Analysis (http://assets.thermofisher.com/TFS-Assets/BID/Reference-Materials/bioprobes-50-journal.pdf)

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (26)

Citations & References
Abstract
Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous AMPA receptor currents in CA1 pyramidal neurons.
Authors:Fiacco TA, McCarthy KD
Journal:J Neurosci
PubMed ID:14736858
'Spontaneous neurotransmitter release and activation of group I metabotropic glutamate receptors (mGluRs) each play a role in the plasticity of neuronal synapses. Astrocytes may contribute to short- and long-term synaptic changes by signaling to neurons via these processes. Spontaneous whole-cell AMPA receptor (AMPAR) currents were recorded in CA1 pyramidal cells ... More
Characterization of a synaptiform transmission between a neuron and a glial cell in the leech central nervous system.
Authors:Britz FC, Lohr C, Schmidt J, Deitmer JW
Journal:Glia
PubMed ID:11968059
'The cross-talk between neurons and glial cells is receiving increased attention because of its potential role in information processing in nervous systems. Stimulation of a single identifiable neuron, the neurosecretory Leydig interneuron in segmental ganglia of the leech Hirudo medicinalis, which modulates specific behaviors in the leech, evokes membrane hyperpolarization ... More
Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons.
Authors:Cuntz H, Haag J, Forstner F, Segev I, Borst A
Journal:Proc Natl Acad Sci U S A
PubMed ID:17551009
'Complex flight maneuvers require a sophisticated system to exploit the optic flow resulting from moving images of the environment projected onto the retina. In the fly''s visual course control center, the lobula plate, 10 so-called vertical system (VS) cells are thought to match, with their complex receptive fields, the optic ... More
Long-term potentiation of exogenous glutamate responses at single dendritic spines.
Authors:Bagal AA, Kao JP, Tang CM, Thompson SM
Journal:Proc Natl Acad Sci U S A
PubMed ID:16186507
'Long-term increases in the strength of excitatory transmission at Schaffer collateral-CA1 cell synapses of the hippocampus require the insertion of new alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) into the synapse, but the kinetics of this process are not well established. Using microphotolysis of caged glutamate to activate receptors at single dendritic spines in ... More
Three-dimensional reconstruction of tubular structure of vacuolar membrane throughout mitosis in living tobacco cells.
Authors:Kutsuna N, Kumagai F, Sato MH, Hasezawa S
Journal:Plant Cell Physiol
PubMed ID:14581629
'Plant vacuoles are the largest of organelles, performing various functions in cellular metabolism, morphogenesis and cell division. Dynamic changes in vacuoles during mitosis were studied by monitoring tubular structure of vacuolar membrane (TVM) in living transgenic tobacco BY-2 cells stably expressing a GFP-AtVam3p fusion protein (BY-GV). Comprehensive images of the ... More