BlockAid™ Blocking Solution
BlockAid™ Blocking Solution
BlockAid™ Blocking Solution
BlockAid™ Blocking Solution
BlockAid™ Blocking Solution
Invitrogen™

BlockAid™ Blocking Solution

BlockAid™ Blocking Solution is superior to commonly used blocking reagents such as bovine serum albumin, normal serum, or casein forRead more
Have Questions?
Catalog NumberQuantity
B1071050 mL
Catalog number B10710
Price (EUR)
180,65
Online Exclusive
240,00
Save 59,35 (25%)
Each
Add to cart
Quantity:
50 mL
Price (EUR)
180,65
Online Exclusive
240,00
Save 59,35 (25%)
Each
Add to cart
BlockAid™ Blocking Solution is superior to commonly used blocking reagents such as bovine serum albumin, normal serum, or casein for use with cells or tissue sections. It is an optimized mix of protein-blocking components, with no dilution required. BlockAid™ Blocking Solution can be used as the initial blocking reagent before primary antibody is applied to minimize non-specific antibody binding, and as a diluent for both the primary and secondary antibody. This reagent is appropriate for cell or tissue immunofluorescence applications. It has also been validated for use with streptavidin conjugates and microsphere-protein conjugates.

Important Features of BlockAid™ Blocking Solution:

Excellent background reduction—superior to conventional blocking solutions

Ready to use—no dilution or stock preparation required

Versatile—use with any primary or secondary antibody, streptavidin conjugate, microsphere protein conjugates, or Qdot™ conjugates

Minimizing background from non-specific protein binding of antibodies is essential for improved sensitivity and maximum signal-to-background ratios. This is especially crucial when looking for low-expressing antigens, when using samples with high autofluorescence, or for techniques where signals are inherently dim (such as use of directly-labeled primary antibodies or use of super-resolution imaging).
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Quantity50 mL
Reagent TypeBlocking⁄Background Suppression Reagent
Shipping ConditionWet Ice
Product LineBlockAid
TypeBlocking Solution
Unit SizeEach
Contents & Storage
Store in freezer -5°C to -30°C.

Frequently asked questions (FAQs)

Can BlockAid blocking solution be used as a protein blocking solution for antibody labeling on cell or tissue samples, or does it only work with microspheres?

BlockAid blocking solution (Cat. No. B10710) is a mix of protein blockers which, when used undiluted or slightly diluted, is as good as or better than any other protein blockers we've tested (such as BSA/normal goat serum). It was developed for use with microspheres, but it is great for cell and tissue blocking. Use undiluted for the initial block, then dilute your primaries or secondaries into it for antibody labeling.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

I used a neuron-specific antibody to label my neurons. How can I reduce non-specific antibody binding?

A blocking step should be performed to reduce fluorescence due to non-specific antibody binding. A common blocking step is the addition of a 2-5% solution of bovine serum albumin (fraction V defatted BSA). Another approach employs the addition of a 5-10% solution of serum from the species in which the secondary antibodies were raised. For example, when using goat anti-mouse IgG secondary antibodies, samples may be effectively blocked with 5-10% normal goat serum. To further reduce background fluorescence, the Image-iT FX Signal Enhancer can be included as a pre-blocking step to decrease non-specific labeling due to charge interactions between the dyes on the conjugates and the cellular constituents.
If you are using a secondary antibody make sure that the species of the antibody is not the same as the species of the sample. For example do not use an anti-mouse secondary antibody on mouse tissue.
Titrate the antibody to the lowest concentration you can use and still get adequate signal.
Try using a fluorescently tagged primary antibody because it should give reduced background but be aware this can reduce signal intensity.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What should I use to block my cells for flow cytometry analysis?

Use serum from the same species as the host species of the secondary antibody for blocking. If the serum is not available, use from 2 to 5% BSA (Fraction V, defatted). If using only a primary antibody, such as directly-labeled mouse primary antibodies, a good blocking reagent is Fc block. CD16 + CD32 Antibody (FRC-4G8) (Cat. No. MFCR004 or MA5-16680) is a low-affinity receptor for the Fc region of immunoglobulin gamma complexes.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

After labeling with my antibody, I am seeing non-specific background binding in my cells or tissue. What could be the cause?

There can be many causes, including insufficient blocking, too high a concentration of the primary or secondary antibody, or degraded primary or secondary antibody. A “no-primary antibody” control can help determine if the secondary antibody is at fault. Otherwise, we recommend trying more stringent blocking or lower concentrations of primary and secondary antibodies.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What concentration of my antibody should I use for cell analysis?

An optimal concentration may be between 1-10 µg/mL for cell and tissue labeling for microscopy, or 0.2-5 µg/mL for flow cytometry. A range of concentrations should be tested to determine what is optimal.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (16)

Citations & References
Abstract
Restriction of receptor movement alters cellular response: physical force sensing by EphA2.
Authors:Salaita K, Nair PM, Petit RS, Neve RM, Das D, Gray JW, Groves JT,
Journal:Science
PubMed ID:20223987
'Activation of the EphA2 receptor tyrosine kinase by ephrin-A1 ligands presented on apposed cell surfaces plays important roles in development and exhibits poorly understood functional alterations in cancer. We reconstituted this intermembrane signaling geometry between live EphA2-expressing human breast cancer cells and supported membranes displaying laterally mobile ephrin-A1. Receptor-ligand binding, ... More
Proinflammatory and vasodilator effects of nociceptin/orphanin FQ in the rat mesenteric microcirculation are mediated by histamine.
Authors:Brookes ZL, Stedman EN, Guerrini R, Lawton BK, Calo G, Lambert DG,
Journal:Am J Physiol Heart Circ Physiol
PubMed ID:17766480
'Nociceptin/orphanin FQ (N/OFQ) is the endogenous ligand for the N/OFQ peptide receptor (NOP). N/OFQ causes hypotension and vasodilation, and we aimed to determine the role of histamine in inflammatory microvascular responses to N/OFQ. Male Wistar rats (220-300 g, n = 72) were anesthetized with thiopental (30 mg/kg bolus, 40-90 mg ... More
Green- and red-fluorescent nanospheres for the detection of cell surface receptors by flow cytometry.
Authors:Bhalgat MK, Haugland RP, Pollack JS, Swan S, Haugland RP
Journal:J Immunol Methods
PubMed ID:9831388
'Fluorescent probes serve as sensitive tools for obtaining structural and functional information in cellular systems. In spite of the high sensitivity provided by fluorescent reagents, cell surface receptors expressed in low numbers often escape detection with commonly used fluorescent probes. R-Phycoerythrin (R-PE), a molecule with a very high quantum yield, ... More
Micromechanical tests of adhesion dynamics between neutrophils and immobilized ICAM-1.
Authors:Lomakina EB, Waugh RE
Journal:Biophys J
PubMed ID:14747356
'Strong, integrin-mediated adhesion of neutrophils to endothelium during inflammation is a dynamic process, requiring a conformational change in the integrin molecule to increase its affinity for its endothelial counterreceptors. To avoid general activation of the cell, Mg(2+) was used to induce the high-affinity integrin conformation, and micromechanical methods were used ... More
Reversible self-assembly and directed assembly of DNA-linked micrometer-sized colloids.
Authors:Valignat MP, Theodoly O, Crocker JC, Russel WB, Chaikin PM
Journal:Proc Natl Acad Sci U S A
PubMed ID:15758072
'We present a technique for the directed assembly and self-assembly of micrometer-scale structures based on the control of specific DNA linkages between colloidal particles. The use of DNA links combined with polymer brushes provides an effective way to regulate the range and magnitude of addressable forces between pairs (and further ... More