pcDNA™3.1/V5-His TOPO™ TA Expression Kit
Product Image
Invitrogen™

pcDNA™3.1/V5-His TOPO™ TA Expression Kit

The pcDNA™3.1/V5-His TOPO™ TA Expression Kit offers one-step cloning of Taq-amplified PCR products into a high-level expression vector. Topoisomerase activationRead more
Have Questions?
Change viewbuttonViewtableView
Catalog NumberVectorQuantity
K480040TOPO-TA Vectors, pcDNA40 Reactions
K480001TOPO-TA Vectors, pcDNA20 Reactions
Catalog number K480040
Price (HKD)
14,350.00
Each
Add to cart
Vector:
TOPO-TA Vectors, pcDNA
Quantity:
40 Reactions
Price (HKD)
14,350.00
Each
Add to cart
The pcDNA™3.1/V5-His TOPO™ TA Expression Kit offers one-step cloning of Taq-amplified PCR products into a high-level expression vector. Topoisomerase activation of the pcDNA3.1/V5-His-TOPO™ vector allows PCR products to be ligated in just 5 minutes on your bench top and results in 90% recombinants.

In addition, the vector includes the following features:

• Strong CMV promoter for high-level, constitutive expression.
• C-terminal V5 epitope tag for efficient detection of recombinant proteins with an Anti-V5 antibody.
• C-terminal polyhistidine (6xHis) sequence for purification using nickel-chelating resin and detection with an Anti-His (C-term) antibody.
For Research Use Only. Not for use in diagnostic procedures.
Specifications
Constitutive or Inducible SystemConstitutive
Delivery TypeTransfection
For Use With (Application)Constitutive Expression
Product TypeTOPO TA Expression Kit
Quantity40 Reactions
Selection Agent (Eukaryotic)Geneticin™ (G-418)
VectorTOPO-TA Vectors, pcDNA
Cloning MethodTOPO-TA
Product LineTOPO, pcDNA
PromoterCMV
Protein TagHis Tag (6x), V5 Epitope Tag
Unit SizeEach
Contents & Storage
2 × Box 1 (store at -20°C)
• 20 μl pcDNA™3.1/V5-His-TOPO™ (10 ng/μl)
• 100 μl 10X PCR Buffer
• 10 μl dNTP Mix (50 mM)
• 50 μl Salt Solution
• 1 ml Sterile Water
• 10 μl Control PCR Template (50 ng/μl)
• 10 μl Control PCR Primers (100 ng/μl each)
• 20 μl T7 Sequencing Primer (100 ng/μl)
• 20 μl BGH Reverse Sequencing Primer (100 ng/μl)
• 10 μl Expression Control Plasmid (500 ng/μl)

2 × Box 2 (store at -80°C)
• 21 × 50 μl TOP10 E. coli cells
• 50 μl pUC19 Control DNA (10 pg/μl)
• 6 ml S.O.C. Medium

Frequently asked questions (FAQs)

Can I store my competent E. coli in liquid nitrogen?

We do not recommend storing competent E. coli strains in liquid nitrogen as the extreme temperature can be harmful to the cells. Also, the plastic storage vials are not intended to withstand the extreme temperature and may crack or break.

How should I store my competent E. coli?

We recommend storing our competent E. coli strains at -80°C. Storage at warmer temperatures, even for a brief period of time, will significantly decrease transformation efficiency.

I performed stable selection but my antibiotic-resistant clones do not express my gene of interest. What could have gone wrong?

Here are possible causes and solutions:

Detection method may not be appropriate or sensitive enough:
- We recommend optimizing the detection protocol or finding more sensitive methods. If the protein is being detected by Coomassie/silver staining, we recommend doing a western blot for increased sensitivity. The presence of endogenous proteins in the lysate may obscure the protein of interest in a Coomassie/silver stain. If available, we recommend using a positive control for the western blot.
- Insufficient number of clones screened: Screen at least 20 clones.
- Inappropriate antibiotic concentration used for stable selection: Make sure the antibiotic kill curve was performed correctly. Since the potency of a given antibiotic depends upon cell type, serum, medium, and culture technique, the dose must be determined each time a stable selection is performed. Even the stable cell lines we offer may be more or less sensitive to the dose we recommend if the medium or serum is significantly different.
- Expression of gene product (even low level) may not be compatible with growth of the cell line: Use an inducible expression system.
- Negative clones may result from preferential linearization at a vector site critical for expression of the gene of interest: Linearize the vector at a site that is not critical for expression, such as within the bacterial resistance marker.

I used a mammalian expression vector but do not get any expression of my protein. Can you help me troubleshoot?

Here are possible causes and solutions:

- Try the control expression that is included in the kit
Possible detection problem:

- Detection of expressed protein may not be possible in a transient transfection, since the transfection efficiency may be too low for detection by methods that assess the entire transfected population. We recommend optimizing the transfection efficiency, doing stable selection, or using methods that permit examination of individual cells. You can also increase the level of expression by changing the promoter or cell type.
- Expression within the cell may be too low for the chosen detection method. We recommend optimizing the detection protocol or finding more sensitive methods. If the protein is being detected by Coomassie/silver staining, we recommend doing a western blot for increased sensitivity. The presence of endogenous proteins in the lysate may obscure the protein of interest in a Coomassie/silver stain. If available, we recommend using a positive control for the western blot. Protein might be degraded or truncated: Check on a Northern. Possible time-course issue: Since the expression of a protein over time will depend upon the nature of the protein, we always recommend doing a time course for expression. A pilot time-course assay will help to determine the optimal window for expression. Possible cloning issues: Verify clones by restriction digestion and/or sequencing.

Find additional tips, troubleshooting help, and resources within our Protein Expression Support Center.

I am using a mammalian expression vector that has the neomycin resistance gene. Can I use neomycin for stable selection in mammalian cells?

No; neomycin is toxic to mammalian cells. We recommend using Geneticin (a.k.a. G418 Sulfate), as it is a less toxic and very effective alternative for selection in mammalian cells.

Citations & References (2)

Citations & References
Abstract
Livin, a novel inhibitor of apoptosis protein family member.
Authors: Kasof G M; Gomes B C;
Journal:J Biol Chem
PubMed ID:11024045
'A novel human inhibitor of apoptosis protein (IAP) family member termed Livin was identified, containing a single baculoviral IAP repeat (BIR) domain and a COOH-terminal RING finger domain. The mRNA for livin was not detectable by Northern blot in most normal adult tissues with the exception of the placenta, but ... More
Endogenous 24(S),25-epoxycholesterol fine-tunes acute control of cellular cholesterol homeostasis.
Authors:Wong J, Quinn CM, Gelissen IC, Brown AJ,
Journal:J Biol Chem
PubMed ID:17981807
Certain oxysterols, when added to cultured cells, are potent regulators of cholesterol homeostasis, decreasing cholesterol synthesis and uptake and increasing cholesterol efflux. However, very little is known about whether or not endogenous oxysterol(s) plays a significant role in cholesterol homeostasis. 24(S),25-Epoxycholesterol (24,25EC) is unique among oxysterols in that it is ... More