SYTO™ 62 Red Fluorescent Nucleic Acid Stain - 5 mM Solution in DMSO
SYTO™ 62 Red Fluorescent Nucleic Acid Stain - 5 mM Solution in DMSO
Invitrogen™

SYTO™ 62 Red Fluorescent Nucleic Acid Stain - 5 mM Solution in DMSO

The cell-permeant SYTO 62 red fluorescent nucleic acid stain exhibits bright, red fluorescence upon binding to nucleic acids. Because theRead more
Have Questions?
Catalog NumberQuantity
S11344250 μL
Catalog number S11344
Price (HKD)
3,080.00
Each
Add to cart
Quantity:
250 μL
Price (HKD)
3,080.00
Each
Add to cart

The cell-permeant SYTO 62 red fluorescent nucleic acid stain exhibits bright, red fluorescence upon binding to nucleic acids. Because the staining pattern of the SYTO dyes in live cells may vary between cell types, we offer the SYTO Red Fluorescent Nucleic Acid Stain Sampler Kit (Cat. No. S-11340) to enable researchers to find the most appropriate red-fluorescent SYTO stain for their system.

Any physiological buffer between pH 7.0–8.0, including PBS, can be used to dilute the SYTO dyes for the staining solution.

For Research Use Only. Not for use in diagnostic procedures.
Specifications
ColorRed
DescriptionSYTO™ 62 Red Fluorescent Nucleic Acid Stain - 5 mM Solution in DMSO
Detection MethodFluorescence
Dye TypeCell-Permeant
Emission680 nm
Excitation Wavelength Range649 nm
For Use With (Equipment)Fluorescence Microscope
Product LineSYTO
Quantity250 μL
Shipping ConditionRoom Temperature
Volume (Metric)250 μL
Label TypeFluorescent Dye
Product TypeNucleic Acid Stain
SubCellular LocalizationNucleic Acids
Unit SizeEach
Contents & Storage
Store in freezer at -5°C to -30°C and protect from light.

Frequently asked questions (FAQs)

How do SYTO dyes bind to DNA?

The binding mode of SYTO nucleic acid stains is unknown. However, the behavior of these and related nucleic acid dyes suggests the following binding properties:

1.They appear to contact the solvent (suggested by sensitivity to salt, divalent cations, and in particular, SDS) and thus are likely to have contacts in the grooves.
2.All SYTO dyes appear to show some base selectivity and are thus likely to have minor groove contacts.
3.They can be removed from nucleic acid via ethanol precipitation; this characteristic is not shared by ethidium bromide and other intercalators. Likewise, the dyes are not removed from nucleic acid via butanol or chloroform extraction. These extraction methods do remove ethidium bromide from nucleic acid. 4. SYTO binding is not affected by nonionic detergents.
5. SYTO dyes are not quenched by BrdU, so they do not bind nucleic acids in precisely the same way as Hoechst 33342 and DAPI ((4′,6-diamidino-2-phenylindole).

SYBR Green I has shown little mutagenicity on frameshift indicator strains, indicating that it isn't likely to strongly intercalate.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (17)

Citations & References
Abstract
Nucleic acid binding agents exert local toxic effects on neurites via a non-nuclear mechanism.
Authors:Pin S, Chen H, Lein PJ, Wang MM
Journal:J Neurochem
PubMed ID:16441515
'The mechanism by which drugs that target nucleic acids cause neurotoxicity is not well described. We characterized the neurotoxicity of Hoechst 33342 (bis-benzimide), a common cell permeable nuclear dye, in primary neuronal cultures. The mechanism of cell death was not apoptotic, as death is rapid, not accompanied by typical nuclear ... More
Multiparameter detection of apoptosis using red-excitable SYTO probes.
Authors:Wlodkowic D, Skommer J, Hillier C, Darzynkiewicz Z,
Journal:Cytometry A
PubMed ID:18431792
'Functional assays allowing phenotypic characterization of different cell death parameters at a single-cell level are important tools for preclinical anticancer drug screening. Currently, the selection of cytometric assays is limited by the availability of fluorescent probes with overlapping spectral characteristics. Following on our earlier reports on green and orange fluorescent ... More
Differentiation of Phytophthora infestans sporangia from other airborne biological particles by flow cytometry.
Authors:Day JP, Kell DB, Griffith GW
Journal:Appl Environ Microbiol
PubMed ID:11772606
'The ability of two different flow cytometers, the Microcyte (Optoflow) and the PAS-III (Partec), to differentiate sporangia of the late-blight pathogen Phytophthora infestans from other potential airborne particles was compared. With the PAS-III, light scatter and intrinsic fluorescence parameters could be used to differentiate sporangia from conidia of Alternaria or ... More
Glutamate release promotes growth of malignant gliomas.
Authors:Takano T, Lin JH, Arcuino G, Gao Q, Yang J, Nedergaard M
Journal:Nat Med
PubMed ID:11533703
'Glutamate neurotoxicity has been implicated in stroke, head trauma, multiple sclerosis and neurodegenerative diseases. Although recent data show that cultured glioma cells secrete glutamate, the growth potential of brain tumors has not yet been linked to an excitotoxic mechanism. Using bioluminescence detection of glutamate release from freshly prepared brain slices, ... More
Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution.
Authors:Ewald AJ, McBride H, Reddington M, Fraser SE, Kerschmann R
Journal:Dev Dyn
PubMed ID:12412023
Modern biology is faced with the challenge of understanding the specification, generation, and maintenance of structures ranging from cells and tissues to organs and organisms. By acquiring images directly from the block face of an embedded sample, surface imaging microscopy (SIM) generates high-resolution volumetric images of biological specimens across all ... More