CellLight™ Golgi-GFP, BacMam 2.0
본 제품은 LMO 제품으로, 고객 분께서 LMO 신고 시스템을 통해 직접 수입 신고를 진행해주셔야 합니다. 자세히보기
CellLight™ Golgi-GFP, BacMam 2.0
Invitrogen™

CellLight™ Golgi-GFP, BacMam 2.0

CellLight Golgi-GFP, BacMam 2.0, provides an easy way to label golgi with green fluorescent protein (GFP) in live cells. SimplyRead more
Have Questions?
Catalog NumberQuantity
C105921 mL
Catalog number C10592
Price (KRW)
736,000
온라인 행사
Ends: 31-Dec-2025
919,000
Save 183,000 (20%)
Each
Add to cart
Quantity:
1 mL
Price (KRW)
736,000
온라인 행사
Ends: 31-Dec-2025
919,000
Save 183,000 (20%)
Each
Add to cart
CellLight Golgi-GFP, BacMam 2.0, provides an easy way to label golgi with green fluorescent protein (GFP) in live cells. Simply add the reagent to your cells, incubate overnight, and the cells are ready to image in the morning.

Want to label other cell structures? Learn more about CellLight fluorescent protein labeling tools

This ready-to-use construct is transfected into cells using BacMam 2.0 technology, where it expresses GFP fused to human golgi resident enzyme (N-acetylgalactosaminyltransferase). You can observe golgi-GFP behavior in live cells using fluorescent imaging and multiplex with other fluorescent proteins or organic dyes.

Cells expressing CellLight constructs can also be fixed with formaldehyde for multiplexed imaging using immunocytochemical techniques.

CellLight Technology is:
Fast and convenient: simply add CellLight reagent to your cells, incubate overnight, and image—or store frozen, assay-ready cells for later use
Highly efficient: up to 90% transduction of a wide range of mammalian cell lines, including primary cells, stem cells, and neurons
Flexible: co-transduce more than one BacMam reagent for multiplex experiments or co-localization studies; tightly control expression levels by simply varying the dose
Less toxic: CellLight reagents are non-replicating in mammalian cells and are suitable for biosafety level (BSL) 1 handling

BacMam Technology
CellLight Golgi-GFP, BacMam 2.0, is a fusion construct of human golgi resident enzyme (N-acetylgalactosaminyltransferase) and emGFP, providing accurate and specific targeting to cellular golgi-GFP. This fusion construct is packaged in the insect virus baculovirus, which does not replicate in human cells and is designated as safe to use with biosafety level (BSL) 1 in most laboratories. BacMam technology ensures that most mammalian cell types are transduced/transfected with high efficiency and minimal toxicity. This transient transfection can be detected after overnight incubation for up to five days—enough time to carry out most dynamic cellular analyses. Like any transfection/transduction technique, the BacMam method does not transfect/transduce all of the cells with equal efficiency, making it poorly suited to cellular population studies or automated imaging/counting. CellLight reagents are ideal for experiments where cellular or subcellular co-locatization is required, or for cellular function studies that need special resolution.

Visualize staining your cell without wasting your reagents, antibodies, or time with our new Stain-iT Cell Staining Simulator.

For Research Use Only. Not for use in diagnostic procedures.
Specifications
ColorGreen
Detection MethodFluorescence
Dye TypeGFP (EmGFP)
EmissionVisible
Excitation Wavelength Range488⁄510
For Use With (Equipment)Confocal Microscope, Fluorescence Microscope
FormLiquid
Product LineCellLight
Quantity1 mL
Shipping ConditionWet Ice
TechniqueFluorescence Intensity
Label TypeFluorescent Dye
Product TypeGolgi Label
SubCellular LocalizationGolgi
Unit SizeEach
Contents & Storage
Store at 2°C to 6°C, protected from light. Do Not Freeze.

Frequently asked questions (FAQs)

How can I increase the transduction efficiency with the BacMam 2.0 reagents such as the the CellLight and Premo products?

Try varying particle-to-cell ratio (PPC), incubation volume, temperature and, cell density (if adherent cells are transduced). For adherent cells, we recommend a confluence of about 70%. Following the PPC, adjusting the volume is the next best parameter to change to optimize protein expression. If that doesn't work, you can also use the BacMam Enhancer Kit (Cat. No. B10107).

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Is there any way to preserve the CellLights labeling beyond 5 days?

Cells transduced with the CellLights reagents can be stored frozen for several months after transduction, without loss of expression.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Are the CellLights products toxic to cells?

If the viral particles are used at the level we recommend, they are very well tolerated by cells.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

For how long will the CellLights products label my cells?

The BacMam 2.0 CellLights typically express for 5 days after transduction.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

What cell types can the CellLights products be used with?

The first generation BacMam reagents were shown to efficiently transduce over 90 cell types, including stable cell lines and primary cells. With BacMam 2.0, it is now possible to also efficiently transduce primary neurons and stem cells.

Find additional tips, troubleshooting help, and resources within our Cell Analysis Support Center.

Citations & References (24)

Citations & References
Abstract
Substrate stiffness regulates cadherin-dependent collective migration through myosin-II contractility.
Authors:Ng MR, Besser A, Danuser G, Brugge JS,
Journal:J Cell Biol
PubMed ID:23091067
'The mechanical microenvironment is known to influence single-cell migration; however, the extent to which mechanical cues affect collective migration of adherent cells is not well understood. We measured the effects of varying substrate compliance on individual cell migratory properties in an epithelial wound-healing assay. Increasing substrate stiffness increased collective cell ... More
Dynamic colocalization microscopy to characterize intracellular trafficking of nanomedicines.
Authors:Vercauteren D, Deschout H, Remaut K, Engbersen JF, Jones AT, Demeester J, De Smedt SC, Braeckmans K,
Journal:ACS Nano
PubMed ID:21923168
'To gain a better understanding of intracellular processing of nanomedicines, we employed quantitative live-cell fluorescence colocalization microscopy to study endosomal trafficking of polyplexes in retinal pigment epithelium cells. A new, dynamic colocalization algorithm was developed, based on particle tracking and trajectory correlation, allowing for spatiotemporal characterization of internalized polyplexes in ... More
Intracellular trafficking mechanism, from intracellular uptake to extracellular efflux, for phospholipid/cholesterol liposomes.
Authors:Un K, Sakai-Kato K, Oshima Y, Kawanishi T, Okuda H,
Journal:Biomaterials
PubMed ID:22858002
'Liposomes are widely used as drug delivery vehicles to transfer chemotherapeutic agents, proteins, and nucleic acids into target cells. To improve therapeutic effects and reduce unexpected toxic side-effects, it is necessary to understand the mechanism of liposomal uptake into cells, and the intracellular fate of internalized liposomes. The intracellular fate ... More
Glycophthalocyanines as photosensitizers for triggering mitotic catastrophe and apoptosis in cancer cells.
Authors:Soares AR, Neves MG, Tomé AC, Iglesias-de la Cruz MC, Zamarrón A, Carrasco E, González S, Cavaleiro JA, Torres T, Guldi DM, Juarranz A,
Journal:Chem Res Toxicol
PubMed ID:22394248
'Photodynamic therapy (PDT) is a treatment modality for different forms of cancer based on the combination of light, molecular oxygen, and a photosensitizer (PS) compound. When activated by light, the PS generates reactive oxygen species leading to tumor destruction. Phthalocyanines are compounds that have already shown to be efficient PSs ... More
A Review of Reagents for Fluorescence Microscopy of Cellular Compartments and Structures, Part III: Reagents for Actin, Tubulin, Cellular Membranes, and Whole Cell and Cytoplasm.
Authors:Kilgore JA, Dolman NJ, Davidson MW,
Journal:
PubMed ID:24510770
'Non-antibody commercial fluorescent reagents for imaging of cytoskeletal structures have been limited primarily to tubulin and actin, with the main factor in choice based mainly on whether cells are live or fixed and permeabilized. A wider range of options exist for cell membrane dyes, and the choice of reagent primarily ... More